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TRANSIENT ANALYSIS OF DIGITAL CIRCUITS
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Department of Electrical Engineering
University of Illinois at Urbana—Champaign, 1984

In the VLSI microelectronics era, the cost of the immense CPU
time and memory storage for a 'standard’ circuit simulator has become
prohibitive. In order to achieve dramatic improvement in the perfor—
mance of the circuit simulator, there are two principal poj.nts of

departure from the 'standard’ simulation approach, namely, ’‘tearing’

decomposition and 'relazatior’ doc:c-posi.ti.on.1

This research is to study the nmerical convergence and stabil-
ity properties of several of the relaxation algorithms that have been
proposed for the simulation of VLSI circuits. The time-point Gauss—
Seidel method with prediction, the exploitation of latency and event
scheduling algorithms are implemented into a gemeral purpose circuit
simulator SLATE-R (a Simulator with Latency and Tearing —Relaxed
version). The performance of the SLATE-R program in the anaslysis of

various types of integrated circuit techmologies is studied.

ICmpnrod with the conventional techmniques, the tearing decomposi-
tion is just some special reordering strategy, therefore, it shares
the same numerical properties with the conventional techniques. How-
ever, the relaxation decomposition processes ome subcircuit at a time
and relaxes all other subcircuits, therefore, it is characterized by
completely different numerical properties.
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INTRODUCTION oy

Circuit simulation has become a significant tool in the design
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of integrated circuits. 'Standard’ circuit simulators, such as

A

SPICE2 [1] and ASTAP [2], substantially include the following four

e
e

algorithmic techniques :

ol el " '," M

-« 138
E{_‘! 1) Stiffly stable implicit integration methods, such as the ',\\-
1 e
2 ;

backward Euler or Trapezoidal formulas, which replace the original

system of nonlinear differential-algebraic equations, describing the

&

solving a sequence of linear equations.

- behavior of the circuit, into a system of nonlinear algebraic equa- R
& tions. ‘.t
g 2) Automatic control of the time step h by using approxima- :

tion differentiation to estimate the local truncation error so as to {'\
g ensure accuracy of the solution. 5"

S 3) The quadratically convergent Newton-Raphson method to .3-
~ solve the system of the nonlinear algebraic equations by iteratively :E
Eg e

4) Sparse Gaussian elimination methods to solve the linear

r
y A9

‘J‘\' ‘;'.."f.

algebraic equations in each Newton—Raphson iteration.
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Because of the good numerical stability and accuracy properties
of the implicit integration methods, these circuit simulators can
handle a wide variety of ordimary differential equations very well.
Also with the variable time step size control techmique, these
methods have a simulation speed advantage in stiff systems (widely
separated eigenvalues), becasse omne can vary the integration step
size according to the rate of change of the response and not
encounter numerical stability problems. For nonlinear equations,
Newton—Raphson iteration can be used to achieve convergence over a
wide range of integration step sizes. Finally, modified nodal
methods are used to formulate the circuit equations because they are
efficient and result in sparse arrays. Thus, in order to minimize the
number of nmmerical operations, these equations are solved by means

of sparse matrix techniques.

Although these circuit simulators are very efficient, their
memory and CPU requiremeants typically limit their use to a few hun—
dred transistors. However, with the rapid growth in the scale, meas-
ured in device count, of integrated circuits being designed in the
VLSI microelectronics era, the cost of the immense CPU time and
memory storage for ‘‘standard’ circuit simnlators has become prohibi-
tive. In order to achieve even faster circuit simulation with less
memory requirements, one must take advantage of some of the special
features of these circuits, such as (a) the repetitiveness of the
circuit (many gates are of the same type), (b) the different levels

of activity of the various gates in a given time interval, and (c¢)
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the almost onme-way propagation of the signal in many gates. Hence a T
series of new generation methods of circuit simulation, such as NOTIS ‘5{5{
e
[3], MOTIS-C [4], DIANA [5], SPLIE [6] and MACRO [7] have been ot
developed. These new simulators, in their gquest for speed, elim '
inated ome or more of the principal features of the ’‘standard’ simu-— ":k
lator in order to make a2 favorable trade—off between cost (i.e., the '
CPU time and memory storage) and resolution (i.e., the attainable ;‘
level of detail). The program SLATE [8] takes advantage of items (a) ::3::5
and (b) above by using node tesring to partition the circuit into 3§:§;
subcircuits so that the sparse matrix pointers only have to be gen [
erated snd stored for each different type of gate and not for all :'S:,_
gates. Secondly, gates that are latent im & given time interval can i'
be bypassed in the solution of the circuit in that time interval. 5.;
These improvements have resulted in approximately a factor of two ‘F:,:
improvement in both memory and CPU requirements. ‘
However, in order to achieve more dramatic improvement in the -§
performance of the circuit simulator, one must take advantage of the Q‘.‘«"
one-way propagation of the signal in most gates, that is, the ‘5
response of a gate has little effect om its input signals, or in (_‘
other words, there is little feedback to the input nodes. When this V‘\_'t
ol
feedback coupling is sufficiently wesk, one can relax certain vari- s
ables in order to decouple the gates. N
i
There are two principal points of departure from the '‘standard’ ,‘E
simulation approach which may be taken at any of the three main lev-— &
els of circuit simulation (i.e., the time level, nonlinear equation '\
o
i
e BT g AR I I I e L S o
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level and the linear equation level), namely, 'tearing’’ decomposition
and ‘temporal’’ decomposition. As to these two techmigues, the former
aims to retain the coavergence and stability properties of the ''stan—
dard’ method, while the latter is related to the so-called ‘Telaxa-
tion’’ or 'indirect’’ method [9,10], and is characterized by completely

different convergence and stability properties.

Ever since the development of the MOTIS frogrln in 1975, the
first relaxation-based mnonlinear time—domain transient circuit simu—
lator, there have been a series of relaxstion-based simulators
developed. However, some of these simulators suffer from serious
numerical properties. In the era of VLSI circuits, the relaxation—
base? techniques seem to be an inevitable tendency [11] im order to
achieve the speed necessary to anslyze large circuits. Thus, & com—
plete, deterministic study of the numerical stability and comvergence
properties of relaxation methods is a valuable and interesting

research topic.

This research is concerned with the investigation of the numer—
icaJ stability and convergence properties of the two commonly used
relaxation methods, waveform and time—point (Gauss—Seidel), as a
function of the degree of coupling. The modified waveform relaxation
method for the simulation of VLSI circuits in the time domain is stu-—
died. This approach is similar to the waveform relaxation method in
RELAX [9]. However, the entire time interval is separated into small
time windows. 1Instead of a sweeping iteration in the entire time

interval [ O, T ], the sweep iteration is processed sequentislly in

4 'A'fl‘ﬂ
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each window and the waveforms are concatenated. The experimental

g
£ -

roesults [12] show that the modified technique can get better resolu-

S 'I'J',l' Jrl‘

tion with reduced cost, thus permitting larger systems to be simu-

F lated. %
.‘.Av "

gy

e In the transient analysis of MOS circuits in which the floating §:
r: gate to drain capacitance is modeled, the pole—splitting phenomenon FE
Ei {13] occurs when the tramsistors are active. The stiffness of the gé
- system is determined by the degree to which the poles split. In this %é
gé research, the numerical properties of the waveform relaxation method ti-
3 are studied for the analysis of linear stiff systems. We examine the &:
i: numerical properties by means of the test circuit which was generated tﬁ

by linearizing the model of a cascade of two inverters in which the

o
»
3

% 1

transistors are assumed to be active. VWhen the window size is shrunk

Eak ek ]
g Yty
e

1

to the time step size, the waveform relaxation method is equivalent

to a time—point relaxation method. The time—point relaxation method

considered in this research is the modified Gauss—~Seidel method [9],

which uses a forward predictor for the unsolved variables, It has

"1;4;.:..
'/

. _:\r;'.)‘r":r‘ )

been demonstrated to be an efficient technique in the timing analysis

-2

) of M)S circuits. The numerical properties of the modified Gauss- é:
. Seidel method are also observed for linear stiff systems. 5
o S
.,A

The SLATE program is modified to implement the relaxation tech-

EHE

o
niques in this research. Chapter 2 describes briefly the different t‘
relaxation techniques used in electrical simulation., In Chapter 3 the i

A
1

modified Gauss—Seidel technique and its numerical properties for the

23

l'k}‘

analysis of a linear stiff system are discussed. An introduction of
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the waveform relaxation method (WERN) and the modified window waveform
relazation method and its numerical properties are discussed in
Chapter 4. The experimental results of the program SLATE-R (a Simu-
lator with Latency and Tearing - Relaxed version) are shown in
Chapter 5. Chapter 6 describes the implementations of the SLATE-R

program. Finslly, the conclusions are in Chapter 7.
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CHAPTER 2

REVIEW OF SIMULATION TECHNIQUES ]

W {ei“g-
Standard circuit simulators have provem to be reliable and ::\E &:

[} \}
effoctive when the size of the circuit is limited to several hundred U

transistors. As the size of the circuit increases, the primary

e 2

nemory storage and CPU time used by these simulators increase rapidly o3\
t'. [14] despite the use of sparse matrix techniques. In order to simu- Wi
late LSI and VLSI circuits, a number of techaniques have been used to SR
improve the performance of the standard circuit simulators. Basi- '!,
cally, these nonstandard simulators can be meaningfully classified by SRR

the decomposition techniques. Wi

g Decomposition refers to the technique that subdivides the whole gzz
set of the system oquﬁons into several subsets. Decomposition canm =
be taken at any of the three main levels of circuit simulation (i.e., “»
the time level, nonlinear equation level and linear equation level). ’Q\g:t
Actually, the system of equations, no matter at what level it is, is =

B processed by a decomposition technique as a composition of several ”:Pé‘e?

! systems with interactions between them. Once the system is decomposed \ff
into subsystems, the techmique of solving each subsystem is identical

to the conventional numerical approsches. £

In this chapter, we will briefly review the analysis techniques f'm'
used in conventional circuit simulation. Then we will describe the r

i
i basic concepts and properties of two systematic approaches to "b:%';‘,
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accomplish system decomposition. -

£y
et &

2.1 Standaxd Circuit Simuletors

¢ The nonlinear algebraic~differential equations which describe

3 the performance of the integrated circuits are genorally of the fol-

lowing form :

5=

£(x(t),x(t),n)=0 (2.1)

=3

E(x(0)-x_)=0 (2.2)

oy

where x ¢ RP is the unknown variable at time t with the given ini-

e e

tisl value x ; x is the time derivative of x at time t; u ¢ RBY is

»

the vector of all the inputs and possidbly their time derivatives;

B BRS

£ :RP x RP x R* — RP is s continuous functionm; and E ¢ R®*P, » ¢ »p

is s matrix of rank n such that E(x(t)) is the state of the system at

§ time ¢, Let { ti ; i=0,1,...,N } denote a sequence of increasing !,
% time points selected by the simulator with to =0 and ty = T, where T EE
t is the given simulation time interval. gﬂ
: By using an implicit integration method, the system of equa-

; tions (2.1) is transformed into a discrete time sequence of nonlinear Eﬁ
Li algebraic equations. At each time point ti' the corresponding alge- &
k X

o

braic equation can be written as

LR 2
| %

v L YW W) % 0 R P N W, N e
RN RN A P e D e A 4 4 NN (2 Dt

4

. ;(x‘)-o (2.3)
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where xl denotes the computed valus of x(ti).

The solution of (2.3) is obtained by applying the Newton-
Raphson method. At each iteration in the Newton—Raphson method, the

resulting linearized equations are of the form:

Ax=Db (2.4)

The NewtomRaphson iteration is carried out until the conver—
gonce is achieved or the iteration limit is exceeded. At each iteras-
tion count, the function and Jacobian matrix evaluations are nece s-
sary to construct the coefficient matrix A in Equation (2.4). Because
in the circuit simulation eavironment, the matrix A is usually very
sparse; hence, the Gaussian eoliminstion method is implemented by

using a sparse matrix techmique to rednce the computational opera-

tions,

It is very important to exploit the sparse technique, since the

computational complexity of the Gaussisn elimination method applied

to an nxn full matrix is proportionsl to n3 while the computational

complexity of the Gaussian eliminstion method with sparse techniques

in on the average [1] proportional to n® ; @ ¢ (1.2, 1.5]. Pigure 2.1
shows the hierarchical organization of conventional numerical methods

for time domain simulation.

As the size of the circuit increases beyond several hundred
transistors, sparse techniques alome are nut enough to provide simu-

lation results in a reasonadle time. In the next section we will
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describe the features of system decomposition, which have led to the

development of several new generations of circuit simulators.

2.2 System Decompogition

The new generationm of circuit simulators for large digital cir &

cuits uses two principles, namely the 'tearing'’ decomposition and the

'relaxzation’’ decomposition [15]. Compared with the conventional

techniques, the tearing approach is just some special reordering HA

strategy. Therefore, the computational operations of the tearing f?5

approach depends mainly on the structure of the system. If the system

structure is not sparse or when the block structure of the system can

not be exploited, this approach does not offer any benefit over com

ventional techniques. In other words, the tearing method will be h

powerful omly if it is combined with some other strategies such as

the exploitation of latemcy and the exploitation of the repetitive—

ness of a limited number of subcircuits.

In contrast, the techniques classified as relaxation methods are

characterized by completely different convergence and stability pro—

perties.

We will discuss the numerical properties of the relaxation ;‘$

techniques in detail in Chapter 3 amd Chapter 4.

These two different approaches to decomposition techniques will

. be descridbed in more detail in the next sections.
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2.3 Toaring Decomposition -

- A

The idea of tearing decomposition techniques is to select a set

e
LT

G of tearing varisbles to separate the entire system into several sub-

1‘&2 systems. There are two different approaches to tearing decompositiosn, g
s namely, branch tearing and node tearing. The former uses tearing 1:}
.:'* branches as the tearing variables (Figure 2.2) while the latter nuses

tearing nodes as the tearing variables (Figure 2.3)., The eatire sys—

5
ﬁ tem is torn apart into several subsystems by removing these tearing

&=

variables.

Algebraically, the branch tearing method is equivalent to a spe~

X
-’-.
s

cial —reordering of the hybrid analysis equations, whereas the node

tearing method is equivalent to a special reordering of nodal

QK

analysis equations. However, both methods result in a Bordered Block

=

Diagonal (BBD) matrix structure (Figure 2.4a). Each block

‘. corresponds to a subsystem, and the border corresponds to the inter- E
;Q“:
3‘:‘? connections, The more general matrix form that is suitable for tear-
e ©
::;: ing decomposition is the Border Bloock Lower Triangular (BBLT) struc- &3
W

ture (Figure 2.4b).

"o
A
K551 ]

I Tearing decomposition of linear algebraic equations can be

. implemented through the Block LU Factorization [16]. Let us consider ;?
he fal
o the system of equations shown in Figure 2.5, i.e., \
i'p %
O\ ‘
b s
:i Ax=D)

1 e
i 8
"'; where x = [ v w 1T ¢ R @ is the vector of the unknown varisbles and w

\ .
:::’ is the vector of the tearing variables. The solution strategy has ;:S;

"
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been to first eliminate the variables v from the system of equations
to obtain the following reduced subsystem from which the value of the

tearing variable w is achieved.

— - -1
(E C)w b -DB b,

where the corresponding meanings of the matrices and vectors are
given in Figure 2.5. The computed solution of w is then used to com—
pute the solution of v blockwise. Some other techniques, such as the
Tearing Algorithm [16], can also be used in implementing tearing
decomposition. However, the Tearing Algorithm is just some particu—
lar form of the Block LU Factorization [17]. The details of this

approach are given in [16].

A series of new circuit simulators, such as SLATE [8] and SAMSON
[18], implement tearing decomposition techniques in the solution of
the linear algebraic equations and give reasonable improvement.
Actually, SAMSON is s mixed mode simulator that also implements a
block relaxation technique for solving the nonlinear algebraic equa—
tions. We will discuss the relaxation technique 1later im this

chapter.

Nultilevel NewtonRaphson techniques [7] canm also be used in
solving a system of nonlinear algebrasic equations decomposed by means
of the tearing method. Here we just describe this procedure briefly.
The solution strategy has been to estimate the tearing variables

(e.g., current or voltage) at each tearing port and to excite the

T2 R

y Ay

v ”
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v torn subsystems with independent sources at these ports. The remain-

.

ing port responses are computed and are substituted into the inter—

If these equations are not satisfied, another

connection equations.

guess is made of the variables chosen as port excitations. This

iterative procedure continues until convergence is achieved. MACRO

[7) is an example of the simulator that implements the multilevel :

Newton—Raphson method for solving the nonlinear algebraic equations.

2.4 Relaxation Deco ition '

In the tearing decomposition approach, the original system of

may be sparse while the reduced interconmection matrix may

equations

not. Therefore, the computational advantage of the tearing decomposi-

tion technique over the conventiomal circuit simulator depends cru-

cially on how small each decomposed subsystem and the reduced inter—

connection matrix are.

However, in the relaxation decomposition approach, the system of

is simply partitioned into several subsystems. There is no

equations

restriction on the block structure of the system. Within each sub-

the variables to be solved for are defined as internal vari-

system,

ables and the other variables are defined as external variables.

The solution strategy of the relaxation decomposition approach

is to solve each subsystem individeally, and iterate through all the :

subsystems until the convergence is achieved. In order to solve a 3

subsystem for its internal variables, the subsystem has to be decou-

<.

o~

2.

pled by replacing the values of its external variables. Usually, it

LA,
SR
4.4 2 &

e g

X b

...............

---------------------
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) 19 &
l takes a number of iterations, repeatedly solving each of the decou-

pled subsystems, so that the values of the external variables of each

C‘.: o

subsystem can be updated. :-
g There are two well—-known types of relaxation techniques, namely ;
< the Gauss—Jacobi (GJ) relaxation [3] and the Gauss-Seidel (GS) relax— %
12‘ ation [4]. These approaches as well as the Gauss-Seidel predictor 3
| ": technique [10] will be discussed in detail in Chapter 3. Figure 2.6
a shows the use of the relaxation technigque at various 1levels of the :
L’g system of equations. The relaxation approach applied at the system
2, level of the nonlinear differential equations such as RELAX [9] is :
;:‘)' the so~called waveform relaxation method which will be discussed in :
T, Chapter 4. The relaxation approach applied at the system of algebraic :
equations such as MDTIS [3], MOTIS-C [4], ,SPLICE [6] and PREMOS [10] E
Iﬂ, is the time—point relaxation method which will be discussed in ':
Chapter 3. :
’
3
3 2.5 Concluding Remarks S‘
-t \
We have reviewed various decomposition techaniques that have
:C? been proposed and implemented. The relaxation approach has the poten— :L
tial of achieving the speeds necessary for the next new generationm of K_"
> circuit simulators ([11]. However, the relaxation approach does not
$ guarantee that the sequence of the iterated solutions will converge :g;
o to the exact solution unless the convergence condition on the parti- E.:E
1 tioned system is satisfied. ‘
. 3
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CHAPTER 3

THE MODIFIED GAUSS-SEIDEL METHOD AND ITS NUMERICAL PROPERTIES

In the simulation of integrated circuits , relaxation tech-
niques were proposed for the solution of simultaneous algebraic equa-
tions in order to speed up the simulator so that larger circuits
could be handled. These methods are iterative snd convergence depends
on the coupling among the variables. Since many digital MOS circuits
have rather weak coupling from output nodes to iaput nodes because
the input is the high impedance gate, these methods should perform
well on digital MOS circuits. This reasoning led to the development
of the MOTIS progras [3], a landmark for the CAD area. Following the
MOTIS simulator, s series of the MNOTIS-type simulators, .ich as
MOTIS-C [4], SPLICE [6] and PREMOS [10] were doeveloped. The -elax.-
tion techniques used in these simulators decompose the system at the

level of the differemce equation.

In this chapter, we describe the time—point relaxation tech-~
niques, such as Gauss—Jacobi relaxation and Gauss~Seidel relaxationm,
together with a study of their convergence and stability properties.
This study reveals why time-point relaxation methods work well onm
some special classes of circuits, but perform very poorly om other

types of circuits.
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3.1 Mathematical Formulation

The systems of the nonlinear differential-algebraic equations
which desoride the performance of the integrated circuits are gen—

erally of the following form :
£(x(t),x(t),u)=0 (3.1)

E(z(0)-x )=0 (3.2)

where x 8 RP is the unknown variables at time t with the given

initial value x,; ; is the time derivative of x at time t; u ¢ R is

the vector of all the inputs and their time derivatives;

f:RP x RP x R* — RP is a continuous function; and E ¢ R™*P, 5 ¢ p
is a matrix of rank n such that E(x(t)) is the state of the system at
time t. Let ( ti 3 i=0,1,.,.,N} denote a sequence of increasing

time points selected by the simulator with t° = 0 and ty = T where T

is the given simulation time interval.

At every time point t ., Equation (3.1) can be approximated by
using an implicit integral formula, such as the backward Euler for-
mula, to genmerate a set of nonmlinear slgebraic equations of the fol-

lowing form:

g(z®) =0 (3.3)

In a standard circuit simulator, Equatiomn (3.3) is solved by

using the modified Newton's method which may take a number of
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i iterations to reach the solution, At each iteration, a series of ”

:

! algorithmic procedures, such as function and Jacobian evaluations, LU X

&} hey
Sk

factorization and sparse matrix solution techniques, are repeated.

The linearized equations at each iteration in the Newton’s method are

2

g .
A
?

L.

of the form:

o
(35

Ax=b (3.4)
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3.1.1 Gauss—Jacobi Relsxation Method

To fit the fast growth of VLSI systems, a series of new genera- °
; tion simulators have been proposed which depart radically from the ”?
5 standard algorithmic techniques, One of the primcipal points of ii
ﬂ departure from the standard simulation approach is relaxation decom- =
" position, There are two common types of time—point relaxzation tech- &

- an

niques used in the new generation simulators, namely the Gauss—Jacobi

o

relaxation, e.g., in the MOTIS oprogram [3], and the Gauss—Seidel

b -

relaxation, e.g., in the MOTIS-C program [4].

- L ]

P

In MOTIS, the components of x® in Equation (3.3) are obtained

-
§ one at a time by solving a sequence of scalar equations, i.e., at 2
N time tu+1' the k-th compomnent of xn+1. x:+} is obtained by solving ;;
3 the following scalar equation: B
4

,.,
[

'k(x:l xgl soay x:_ll xk, !:+15 veeyp x:) = 0 (3'5)
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In the solution sequence, for each scalar equation, the previ-

- ons values are used for all the ’'exogenous’ variables. This process ‘
fj’* yields an approximation to the solution which can be substituted into E
g Equation (3.3) to determine if the values satisfy the equation. If “t
not, the process is repeated and hopefully the iterates converge ?‘~
:u:% rapidly to the solution. '

-

F {
3.1.2 Gauss—Seidol Relaxation Method vy

=22 =3
=

MOTIS-C used the Gauss—Seidel algorithm to achieve a better

result than thst of MOITIS. The Gauss—Seidel relaxation method is

- 7 >
& .

\
; quite similar to the Gaunss—Jacobi method, but recently updated values 5
f-. of the solved vn;iahle are retained, The solution sequence is to i

solve the following equation for x:ﬂ‘: "“
:
e R TR . T R R (3.6) 5
¥
i The process is repeated until the sequence conjerges to the ;y
&,\ solution or the number of iterations becomes excessive. If each sub- 'c‘.
@( system has only one internal variable, i.e., the x;'s in Equation
* (3.5) and Equation (3.6) are scalar, the relaxation approaches are t
:Rt ssid to be dome pointwise, that is, point Gauss—Jacobi relaxation t_:\
. method and point Gaunss—Seidel relaxation. Otherwise, it is said to be : "
"': blockwise. From the network point of view, the pointwise relaxation .}
g methods are equivalent to decomposing the network at each node, :‘

whereas the blockwise relaxation methods decompose the network iato ("‘.
%’ subnetworks which may consist of more than ome node. \
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X

B =
‘“ In the Ganss-Seidel method, because the previous values are ]

< used for those unsolved variables, it has been found that usually the

iy
o
Fatate
S ot

sequence converges much more rapidly to the solution, Originally

i MOTIS and MOTIS-C were programmed to only do the first iteration and &
i: to control the time step to achieve accuracy. For large-scale cir- .
% cuit analysis, this one-sweep approach was used to save additional E;

computational steps. In order to achieve less error and better con- gﬁ

%; vergence for the unsolved variahles; PREMOS [10] used a one—sweep B
5 Gauss-Seidel technique with prediction and got reasomable improvement E}
& in the transient analysis of MDS circuits. This technique is c
X described below. &g

b £)
[ &]
s 3.1.3 Modified Gauss—Seidel Relaxation Method
% The solution strategy of the modified Gauss-Seidel wmethod has ?ﬁ
been to use a forward first-order linear predictor for the unsolved

R ¥

variables. That is, at the i—-th scalar equatiom, to solve for x,,

the values for the unsolved variables xj',, j > i are predicted

according to the following formula:

A A
00 T T

- .
‘. xn - xn-l =l
: guess T %+ B 3. 2
. ’ 1 i

2

el

E]

- Experience has shown that of the above time-point relaxation

methods, the Gauss-Seidel method with prediction, used in the program

| ¥

PREMOS, usually performs the best for bk small enough. However, the

fact that all three methods take only ome sweep has proven to cause
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accuracy problems in some circuits. Thus more recent versions of
MOTIS [19] and SPLICE1 [20] jterate until the sequence converges to a

solution., If the number of iterations becomes excessive, the time

step is reduced to improve comvergence. However, this approach can

become computationally inefficient under certain conditions., To
understand why, the convergence and stability properties of these

time-point relaxation methods are analyzed in the next sectiom.

3.2 The Convergonce snd Stability Properties

In order to study the stability properties of numerical

integration methods, a simple first-order differential equation of

the form

X = ax (3.8)

is chosen by numerical anslysts as a test vehicle. Similarly, in
order to study the numerical properties of relaxation methods used to
decouple s system of differential equations describing the behavior
of digital circuits, the simple linear test circuit in Figure 3.1 was
chosen [21]. This test circuit was generated by linearizing the model
of a cascade of two inverters in which the transistors are assumed to
be active. The olements i , g, and C, represent the Norton equivalent
circuit at the output of the first inverter, amnd the capacitor Cc
represents the coupling (feedback) from the output node of the second
inverter to its input node #1. The elements Cl, cz, 5 and 8, are all

scaled to 1, and g and C, are adjustable,.
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L oA
5'. The test circuit has two natural frequencies on the negative =
H
Z:L real axis, and their ratio (degree of stiffness) can be increased by
'i" :‘
::} incressing C  or 8, #s shown in Table 3.1.
|

i "
gy

::. Table 3.1

.:!: Effect of C  and 8y on the time constants of the test circuit
"
i W&
|2

§ : case C.(F) g (8 T =1/A () Ty=1/0y(s) M/2y o
) b
- 1 0.01 1 1.1 0.92 1.22

I 2 | o.10 1 1.5 0.80 1.88 -
| 3 3 1.00 1 4.3 0.70 6.17 3
s 4 0.01 10 1.4 0.74 1.87 o
- .
e s | o.10 10 2.8 0.43 6.37 %
,*: [
". 6 1.00 10 13.8 0.22 63.30

7 0.01 100 ~.6 0.39 6.80 M
P
Y 8 0.10 100 12.1 0.099 122.00 "
-\, é
K'- 9 1.00 100 104.0 0.029 3597.00

Dt 1)
"2 10 0.01 1000 11.9 0.085 140.00 o
- i
'§ 11 0.10 1000 102.0 0.012 8696 .00

"l ._(\..
j 12 1.00 1000 1004.0 0.0030 335570.00 &
[\ -
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. The transient solution to this test circuit is of the form Ny
ol
. 2]
\ -t/x ~-t/t EJ' ]
} Vo(t) =k, ¢ 1, ke 2 (3.9) .l
w
v, g
f. The dominant natursl frequency is 11, and it determines bow "_
slowly the transient response decays. Ome can estimate the dominant '
§ .}-\'_
", nastursl frequency using the Miller effect approximastion. In the next .\’-‘4
d)“.n‘
. section, we examine the Gauss—Seidel relaxation method and determine :: :
L% °
the relation between the stiffness of the test circuit and the time o
"_L:-
fj step h needed in order to achieve good comvergence to the solution.
%
'F.)-
3.2.1 Comversence of the TimePoint Gauss-Seidel Iterstion Method
- :‘:::;:
’ The numerical solution is begun in the ususl way, t!at is, the :
A o
differential-slgebrsic Equations (3.1) are coamverted to a set of A
slgebraic Bquations (3.3, by means of an implicit integration for- _;.,:
Pf...‘
muls, The equivalent circuit resulting from this transformation is t::},“
¥ R (.-:.:
‘ obtained by replacing the ensrgy storage elements with their compan la)
: ion models, For instance, the node equation of the test circmit of ::f_-:"
Figure 3.1 can be expressed in the following form:
..1'..
C [ ‘{‘i
b +C ~C v '] 0 v v
r 177 o e (1 o (3.10) e
Ce Ca*Ce | | V2 ta 82|72
"
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By using the backward Euler formula as follows:
. xn - X -
x - —_uh (3.11)
n

where hn is the size of the time step, the equivalent circuit is as

shown in Figure 3.2. The equations for this circuit are

_1 C1*Ce*Ba8y -, V1,2
h
n
=C. + bysy hn32+cz+cc_‘ V2,n
(3.12)
__1 c1+cc _cc Y1,n-1 is(tn)
h =
"l -c C,+C 0
i 27 | V2,01 N

Note that if C = 0, the two nodes are decoupled. Thus we can
solve for vy first (the output of the first gate), and then we can
solve for v, (the output of the second gate) without inverting the
circuit matrix, In special purpose circuit simulators for large
digital circuits, this is essentially what is done, except on a much

larger scale.

If C # 0, the equations (gates) can be decoupled by relaxing
certain nodes by means of the Ganss—Seidel method. For instance, for

the test circuit, we express Equation (3.12) in the form

F]
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(3.13)

—cc/hn

0

The Gauss~Seidel method of solution for Equation (3.13) is the itera—

tion

(x) . - -1 , (k-1)
x. (L+D) IJ_vn + Bgn_

1 v4

¢ Bnly

C h +C,+C
-(L"'D)—IU = [ [ 0 82 n c2 c ]

C1+cc+51hn)(c2+cc+32hn, 0 ¢

No matrix inversion is required, since L+D is triangular. A suf-

ficient condition for these iterates to converge to the solution is
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erCi B N

d F

given by the following inequality:

x,t‘
2R

Ha+ ol < 1 (3.19)

The above norm is a function of the step size hn’ Using the 1,

el o .

norm, we found the upper bound on the step size hn for the range of

SN X

o

parameter values in Table 3.1 such that Equation (3.19) is satisfied.

This upper bound, b , is given in Table 3.2.

!
' Table 3.2 d
W L1} o the t tep with the Gauss—Seidel method ‘
g
‘P case | Co(F) g,(8) vy 2 by Bunstable 0
1 0.01 1 1.1 0.92 . . u
5 2 0.10 1 1.5 0.80 . . ﬁ
C 3 1.00 1 4.3 0.70 . *
;é 4 0.01 10 1.4 0.74 . . a
_ 5 0.10 10 2.8 0.43 . . E
b 6 1.00 10 13.8  0.22 1.0 2.0
0 7 0.01 100 2.6 0.39 . i v
P 8§ | 0.0 100 12.1  0.099  0.16 0.32 |
:_' 9 1.00 100 104.0  0.029 0.052 0.104 33
g 10 0.01 1000 11.9 0.085 0.14 0.26 §
11 0.10 1000 102.0 0.012 0.012 0.025 '
b 12 1.00 1000 1004.0 0.0030  0.0050 0.010 E

i’ :
'
a!

b ®Criterion satisfied for all h > O
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The term hunstablo is the step size at which the solution 's
J
ES becomes unstable in the modified Gaunss—Seidel method which will be ¥
ﬁ discussed in the next section. -
;
From Table 3.2 we found that im order to satisfy inequality ﬁ
;
gg (3.19) the step size h has to be approximately less than or equal to :
the size of the smallest time constant in the system. For example, f
,‘;n . 9;3
for C.=0.1F and g =100 S, then h ¢ 0.16 s is sufficient for con- ¥
E§ vergence. If 8, is increased to 1000 8, then h ( 0.013 s is suffi- i
cient for convergence. Our numerical experiments for this circuit ;
; concur with the sbove observations. For imnstance, for Cc = 0.1 F and %
i3
ii 8, =100 S, if h = 0.1 s the iterative solution sequences converged, f
but they did not comverge for h = 0.2 s, (o
- 3
(
3
3.2.2 Numerijoa] Stability of the One—sweop Gauss—Seidel Jterstion
& Mothod with Prediction
:
.
Ei In our test circuit we used the following predictor it
b)
4
(0) Y221 " "2.22 y
& v. = v +h ( ) (3.20) "

L_ 2,n 2,21 n by

) o

in order to initislize Equation (3.16). If k = 1 in Equation (3.16),

then gupon substitution of Equation (3.20) into Equation (3.16) we

FFn

AT | Y

obtain the difference equation:

BE”
|

ENEeS

Jmz
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* By
¥ -c. —>
¥ [c1+cc + hygy 0 ] ~(Cy+C;) ¢ hn—l
! I, * - b §
S (=C) + sgh, hn'z +Cy+Ce a Ce (Cz+c°) =1
b c i.(t,)
g + 2 [ 0 "¢ ] v =k [ $' n ] (3.21)
3 i, 0 0 JInr2 =Dy 0
; Applying the Z-transform yields the following characteristic
\ polynomial:
P23 + @2 + RE 45 =0 (3.22)
M
;: where for hn = hn—l = h
(4
P= (slh + Cy + C)(gah+ Cy +C)
N = -
) Q= =€y + €)(Cy + C; +ggh) = (Cy + CH(Cy + Cy + gah)
4 |
)
) *CelBan - ¢ )
: ; ,
t- ;
p) cz
b R = (cl + CJ(Cy + C) + Cp+ C(C-gy D)
k- S = -Cz i‘_\
. c
[}

: 3
- .
- i

f The term h . _i1e Tepresents the time step at which Equation

Te v
6.
»

:.'..‘.

(3.22) has a root on the unit circle. For our test circuit the values

- !
y 3

-
EE"
. )

of hnnstable are given in Table 3.2. If the time step becomes greater

i

e o _l
g
kit

than b .apie the integration becomes nmerically unstable.
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Furthermore, the root loci inm Figure 3.3 and Figure 3.4 give
more details about the stability of the modified Gauss—Seidel method
for the stiff case. The roots of the characteristic equation (3.22)
are a function of h, In order for the modified Gauss—Seidel method to
be numerically stable, the roots of Equation (3.22) must 1lie inside
the wunit circle. For B  small enough, this is the case. However, we
found from the root locus that if hn is much larger than the smallest
time constant in the circuit (approximately a factor of two), these
roots lie outside the unit circle. For example, the root locus of the
case when C, = 0.1 F and g, = 1000 S is shown in Figure 3.3. Note
that for h > 0.025 s one of the roots lies outside the unit circle.
From Table 3.1 this is approximately th, Thus, in this case we are
constrained by the numerical stability properties of the algorithm to
keep the step size in the neighborhood of the smallest time constant

over the entire time interval,

Table 3.3 demonstrates the constraint condition of the modified
Gauss-Seidel algorithm. The analysis time interval in Table 3.3 is
311. where Ty is the larger time constant of the system in each case,
such that the system can reach the steady state during the apalysis
time interval. With the local truncation error 0.001, the number of
the time points needed for each case is counted in Table 3.3 to see
the effect of the system stiffness on the time step. It is found
that the modified Gauss—~Seidel method takes many time points for the
stiff systems., For example, in case 9 with C°-1,o F and ;‘-100 S, vy
= 104.0 s, it takes 2650 time points in 3:1; the average time step in

. - - R - LR RO RN
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Fig. 3.4 Root Locus of One-Sweep Gauss~Seidel Method
with Linear Prediction.
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this case is 0.117 s which is about four times the smallest time com
stant t, (=0.029 s), vhile for the standard circuit simulation tech-
nique it takes only 20 time points with the average time step 15.6 s.
Another instance is in case 11 with Cc-o,l F and g,=1000 S, v; =
102.0 s, and it takes 8122 time points in 31:1, the sverage time step
in this case is 0.037 s which is about three times the smallest time

constant T, {=0.012 s), while for standard circuit simulation it

takes only 44 time points with the average time step 6.96 s.

Tsble 3.3.
The number of time points for vagrjable time step (LTE= .001)
case hy/2q modified Gauss-Seidel standard method
1 1.22 5 6
2 1.88 6 6
3 6.17 8 7
4 1.87 6 7
5 6.37 9 9
6 63.30 7 6
7 6.80 17 17
8 122.00 91 19
9 3597.00 2650 20
10 140.00 231 45
11 8689.00 8122 44
12 335570.00 90048 45
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However, for those nonstiff systems such as cases 1 to 7, both
the modified Gauss—Seidel method and the standard circuit simulation
technique take the same number of time points. It is clear from
Table 3.3 that, for stiff systems, the time steps have to be con—
strained to the order of the smallest time constants of the system to

keop the solutions numerically stable.

3.3 Concluding Remarks

3.3.1 Remark I

In the above tables, the parameters C1 =1, c2 =1, gy = 1 and
8, = 1, the floating capacitor Cc and the transconductance 8y are
varied to change the stiffness of fhe system., If Cc = 0, the system
in Figure 3.1 contains two separated subcircuits, The circunit becomes
coupled with the introduction of the capacitor Cc. If the coupling
is too strong, the system becomes stiff and the modified Gauss—Seidel

method does not work well as seen in Table 3.3.

The conclusion of the numerical properties of the time—point
Gauss-Seidel with (or without) prediction drawn from this linear test
circuit is that [21,22], if the coupling element sigrnificantly
affects the natural frequencies of the circuit and creates a stiff
system, then no advantage is gained by wusing implicit integration
methods because the convergence of the Gauss—Seidel iterates requires
that the step size be approximately no larger than the smallest time

constant in the circuit over the entire time interval. The

. . o m e e e e e e, o
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Lay]
;: computational cost can be significantly increased by this constrainmt, 5
Y 6
¢ 2
: so much so that all the advantages gained by decoupling the circuits &
cannot omly be lost, but the computational cost might even exceed §§
} that of & general purpose circuit simulator.
: d
1 Figure 3.3 and Figure 3.4 show that the modified Gauss—Seidel t
B technigue goes nmmerically unstable when the time step exceeds the gz
o |
\ smallest time constant of the system by a factor of three or four.

| ]

Given the above results, one would expect the modified Gauss—Seidel

method to perform poorly in the transient analysis of MOS circuits in

.
1

2N »

which the floating gate-drain capacitance is modeled. In such cir-

ke cuits the pole—splitting phénonenon [16] occurs when the transistors

3 2

;1 are active, The degree to which the poles split determines the

stiffness of the system, and is determined by the low frequency gain

o

PR
)
A ran,”

e

of the logic gate, o.g., slope of the dc characteristic in the active

=

region. However, due to the gate delay and the nonlinear characteris—

Bos

L)

N

)

§

]

I tics of the MDS tramsistor, the pole—splitting phenomenon does not
1.’

[}

! seem to be very strong [10]. Figure 3.5 shows that the modified

- Gauss-Soidel method works well for the 3-stage ring oscillator.

.
S

1%y

3.3.2 Remazk 11

" In the other case, suppose there is a coupling capacitor bdetween g&

5 2

} two subnetworks whose time constants are already widely separated, ‘X

. 8

. that is, in Figure 3.1 suppose 8§ 1.0, C =1, and G = 1, g, = -

i: 1.0x10°4. Table 3.4 shows the required number of time points with a Ej
o

; variable time step when the transconductance 8, = 1 and the floating

- >
E

o
]

o
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E capacitor C  is varied. 2
‘ N
Table 3.4

A number of time points for variable time step (LTE= .0000 \
:\

;‘_; \
h case cc(F) 12/).1 method I method II method III ;
7 1 0.00 10000 570 570 570
~ if“\
2 0.01 10200 570 574 570 N

]
3 0.10 12000 569 608 570 ,
) 4 1.00 30000 397 765 570

T
et
gy

where

method I : Modified Gauss—-Seidel Technique h
method II : Gauss—Seidel Technique ]
method IXII : Standard Circuit Simulation

g ;il‘

T
a'ete )
et

1

) Table 3.4 shows the two decoupled subsystems (Cc) are already f_‘
Eg stiff and the coupling capscitor C  does not significantly affect the k
a time constants. For example, with Cc = 0 one subsystem has a time :
X constant equal to 1 s, and the other has a time constant equal to :'
L: 10000 s, Note in this example the nmmber of time points for each case ;,
., in Table 3.4 does not vary significantly as the coupling capacitor \
tﬁ changes. Contrary to the results shown in Table 3.3, in this case the ':_'E
E coupling does not affect the coavergence and stabil ity‘ properties too *
much, This conclusion also concurs with some other researcher’'s

E observations [23]. ";
g
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In [23], Gear studied the simulation of an aircraft which was

simplified to the two—subsystem model as shown in Figure 3.6.

The control subsystem reacts very rapidly (being electromic) whereas
the flight dynamic subsystem reacts relatively slowly, being a
mechanical change. Because the dynamics are slow, his conclusion was
that, there can be very 1little coupling from the control to the
dynamics, and ome can break the feedback loop from the dynamics to
the control and handle each subsystem separately. Here we keep C1 =
C, = 1, by adjusting gy = 1 and g, = 1.0x10 % to create the similar

environment as in [23] and achieve the same comclusion.

In the next chapter, the waveform relaxation method and its

convergence and stability properties will be discussed.
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CHAPTER 4

THE WAVEFORM RELAXATION METHOD

AND ITS NUMERICAL FROPERTIES

In this chapter, we will discuss a second avenue by which the
relaxation of nonlinear systems has been approached. While the first
approach, presented in Chapter 3, decomposes the system into several
subsystems at the 1level of the difference equations, the second
decomposes the system at the level of the ordinary differential equa-
tions. This alternative relaxation method at the differeatial equa-
tion 1level must deal with elements in function spaces, i.e.,
waveforms., Thus, it is classified as the waveform relaxation method.
This approach began with the work which led to the RELAX program [9].
Bither the Gauss-Jacobi method or the Gauss-Seidel method could be

used in the waveform relaxation algorithm.

A brief mathematic description of the waveform relaxation method
together with its convergence and stability properties will be dis—

cussed in this chapter.

4.1 Mathematical Formulation

Let us recall the set of algebraic-differential equations in

Equation (3.1) and Equation (3.2) as follows:

£(x(t),x(t),u)=0 (4.1)

......
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R
“c
e E(x(O)—xo)go (4.2)
‘~|
3\:& 1
;\: where x ¢ RP is the unknown variable at time t with the given ini- EQ’
b .
e tial wvalue i oz is the time derivative of x at time t; u ¢ R' is
'.:’ the vector of all the inputs and their time derivatives; g
b
:::g £ :RP x RP x R* — RP is a continuous function, and E ¢ R™*P, a  p ﬁ'
b

is a matrix of rank n such that E(x(t)) is the state of the system at

)&‘ time t. Let { t.; i=0,1,...,N } denote a sequence of increasing

i

;._,i‘ time points selected by the simulator with to = 0 and ty = T, whese T ﬁ
Y is the given simulation time interval.

3 B
E’; The general frame of the waveform relaxation algorithm con-

sists of two major processes, namely, the assigmment—partition pro- E
3¢S ' X

135 cess and the relaxation process. The dynamic system is decouplied into

.
Y certain subsystems through the first process, while the second one a
w yields the waveform of each subsystem st each iteration.

o a
f;

L 4.1.1 The Assigament-Partitioning Process @

»

In this section, we describe the first process of the waveform

2
= |

: relaxation method, that is, the assignment—-partitioning process, to

;‘:': decouple the system of nonlinear algebraic-differential equations g
= into subsystems. In the assignment—partition process, each unknown "
’* varisble is assigned to an equation of (4.1) in which it is iavolved. {;i
:§ However, no two variables can be assigned to the same equation; <
, therefore, Equation (4.1) is partitioned intom disjoint subsystems g

as follows : i\

R N NG LA S L - N L e L e R ST LN L S LAV NG - AR TSR - LR TR LY
'3 .ﬂ‘ gz "-’. ‘{, _’};‘ P, \ ‘J‘. W . h A = ot ,, .*' 5" o -‘-‘. ,13\-"‘4 W‘ ” » ! ',‘. }-Y‘}*

) A



"
. i
é§ 49 ]

£,( x4, x4, dg, u) =0

.0

a.

* e (4.3)
g . o ‘
fal xyo 2y, dy,u) =0 &

% E( x(0)- x,) =0 (4.4) it
ged

= i
k3 B
: 4
ﬁ where for each i = 1, 2, ...,mn z; 8 npi is the subvector of unknowa »
& variables assigned to the i-th partitioned subsystem and ;
3. b
& ]
A

. di = ( xlp eey xi_la xi+1. ce) !- » }??!
ii (4.9) 5
.x ; ; - )T ‘:

1: LI ] i"l’ i+1, [ X W] x- ;l

&2
?‘“" -

In the i~th subsystem fi' x4 and xj , 1# j are called vector K

endogenous and exogenous variables, respectively. If we treat the

vectors di’ i=1,2, .., m as inputs, then (4.3) can be solved by 3}

solving m independent subsystems. In other words, the system has been

dige

" decoupled into m subsystems, and d ‘s are called the decoupling vec- L
2

gt

o tors of the system. The second process, relaxation process, will be :;:‘
introduced in the next sectionm. " ;

h

L ‘(
. '
{' \f
bt

o '“
Eg 4.1.2 The Relazation Process !
_;

The relaxstion process starts with an initial guess of the ;::

] ™
E waveform solutions of (4.1) in order to initialize the approximated \:s:
4,

E L4
3

~ 4
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waveforms of the decoupling vectors, It’s anm iterstiom process; dur—
ing each iteration, each decomposed subsystem x; is solved for its
endogenous variables in the entire time evolution [ 0, T] by using
the approximated waveform of 1its decoupling vector. The iterative
process is carried out repeatedly until satisfactory comvergence is

achieved.

The actual implementation of the Waveform relaxation algorithm

can be described as follows:

1) Assignment-partition process

Assign the unknown varisbles to equations in Equation (4.1)
and partition Equation (4.1) into m subsystems of equations as by

Equation (4.3).
2) Initislization of the relaxation process

Set k = 1 and guess an initial waveform ( x%(t); tel0, TI);

the typical guess is z%(t) = x(0) for all t ¢ [ O, T).

3) Analysis of the decomposed system at the k-th iteration

i) For the Gauss-Jacobi Waveform Relaxzation method

for each i= i, 2, .., m, set

am i BB




e
-,
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k 1 k—l
di = ( 1 0 ees xk- » xi+15 Y x
(4.6)
k-1 k-1 k-1 b—l T
xl ? ooy xi 1’ xi+1... )
ii) For the Gauss-Seidel VWaveform Relazation method
for each i = i, 2, .., =m, set
| I § 4 k k-1 1
di ( xlo XY} xi"’l » xi+1 2 ey 8:- »
(4.7)

xf » ses ’t-l . x}:i s ses xk-l)

With the decoupling vector di"' solve for (xik(t) H

te[ O, TI) from Equation (4.3).

4) Iteration loop

Set k =k + 1 and go to 3). The iteration process stops when
the difference between (xX(t); te[ 0, TI) and (xX71(t); tel 0, T,
i.e., max i1 xp(t) - x5 () i1, is sufficiently small.

te [O.T]

In the next section, we will describe the modified window

waveform relaxation method. From a test circuit, it is shown that the

modified technique requires less CPU time and memory storage.
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. =
B 4.2 The Modified Waveform Relaxation Mothod and Its L.
)

!' Numerical Properties &
» £
L At each iteration, the waveform relaxation method decomposes

,
.
< |

%

the system into several subsystoms oach of which is anslyzed for the

: o
_{ entire given time interval., The accuracy anmd comvergence properties E?
¢ for the waveform relaxation method have been studied in [9]; however, .
, the huge memory storage needed to store the waveforms of each subsys— ‘3]
‘i tem in the entire time evolution [ 0, T ] can be expemsive for large
o systems. Q
.\ However, in some circuits the iterates oscillate about the solu~- ﬁ
} tion. In these cases, at each iteration only a specific part of the ~
:‘ waveform in each subsystem can be useful in analyzing other subsys— %
, tems. Under this condition, sweeping through the entire time evolu-~- e
, tion [ 0, T ] is somewhat of a waste in either CPU time or memory ﬁ
}:./ storage, For example, for a three—stage ring oscillator im Figure Q
). 4.1, Figure 4.2 contains the solution waveforms of the circuit after

. .

'.i: each iteration. For the waveform of the first iteratiom in Figure k‘?
‘_ 4.2, we can find that the informatiom beyond t1 is quite different

".‘ from that of the actual waveform, hence it’s meaningless using the §
% waveform beyond t, to analyze other subsystems. §
"*2 In the next section, we use the circuit in Figure 4.1 as an {i
{)i example to illustrate the basic concept of the modified waveform Q.‘
)Qi relaxation algorithm, g
."
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(a) A MOS Ring Oscillator. Fre

(b) The Circuit Interpretation of Its Decomposed Circuit
at The k~th Iteration of The GS-WRM Algorithm.
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Fig. 4.1 A 3-Stage Ring Oscillator.
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Fig. 4.2 Vindow Size = T, Solid Line Is the Exact Solution.

The Number of Iterations Increszses as the Coupling
Capacitance Increases.
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4.2.1 The Modified Waveform Relaxation Method

For the circuit in Figure 4.1, if we cut the entire time evolu-

tion [ 0, T ] into n + 1 time 'windows’’, i.e., [ O, ty 1, [ ty, ¢y 1,

by een [ tn' T ], and, instead of sweeping the iteratioms in [ O, T 1], :

we sweep the iterations in each time 'window’. In other words, after

reaching the convergent waveform in window 1 (i.e., [ O, t1 1) then

process the iteration sweep in window 2 (i.e.,l[ t1, t3 1)y oo, even "33

i

Concatenating

tually obtaining the waveforms in each time window,

these waveforms yields the waveform in the entire time evolution [ O,

T ]. This is the basic idea of the modified window waveform relaxs-

tion method [12].

The fundamental algorithm of the original Gauss—Seidel Waveform

relaxation method in [9) can be described as follows :

The Gauss—Seidel Waveform relaxation algorithm

e r TP 7 - " 3 p
o M & Al RPTREPRUR SN, X
s B N 2 & 2 e D n .
et e TR LT T W NG - Y TS

[ B X,

BEGIN

Rt
ke
1"“'&

x = [ Voltages, Currents ]

K n’l

WHILE ( 8% (¢ Tolerance ) DO

b
- g

BEGIN

FOR subsystem i, i = 1 TO m DO

BEGIN

FOR time t = 0 TO t = T DO

BEG IN NS
[\ “.‘ e 1
1% O
Solve nonlinear equations ,:: :
Y

, X
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o=
ke Lo+l n+l ntl ntl n n ”
}Q xi = fi(xl poc‘xi_lpxi lxi+1loolx')
3y o
\% and Gd
N
n
% o+l = gl = o
- x370(0) = x3(0) = x o
L
¥ M
/'- (L:\"
( END g
‘ END { sweep m subsystems } g
4
i
:.'j 871 = max max 1 2 1e) - 22(e) || E{
&
= i t
i
7 -3
4 nen+1 I
A% >
) END { waveform iteration loop }

£

’ END

.ﬁ,

3 |
,p!z While the Modified Window Waveform relaxation method is of the

i‘* following form : g
b

i ; 3
.3?', The Modified Window Waveform relaxation algorithm *3
' BEGIN S
[}

::’: x = [ Voltages, Currents ] -

- -
 §

{ I

w = [ Windows ]
i=1 o
BEGIN

FOR window j, j = 1 TO k DO

!

- oy S By K.J .:
.ys_-.rtru'l-,a
88 =

4

::: BEGIN (A
! R
..‘; FOR subsystem i, i = 1 TO = DO 8
t"q h-.‘»
I‘ A

)
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i a=1 "
V3

WHILE ( 8% < Tolerance ) DO N
=
: BEGIN S
g,. FOR time t =0 10 t = t.i DO i'i
BEGIN ey

o] !
3 g
\ Solve nonlinear equations oy
r: Ny
S o+l _ o o n¥l a+1 o+l n n
v S AL AR R ik 11 At FOPPRNE o f’}‘i.f
:' and "t
i xn"’l(o) = xn(o) = x ._-:
4 i i o o
END ey
j END { sweep m subsystems )
Ny

3 n+1 +1 N3
N 87" = maxmay || ™ (t) - xB(t) |1 N
it i
.. e
w a=1a+1 i';
M
o END { waveform iteration loop } e
(ht &
i=j+1 ..
:,: END { window process } ..\\
-.:::
. END s
LY "I“.
. -;'_'\4
[
!’ For the ring oscillator circuit, Figure 4.2a and Figure 4.2b AV
. show the waveforms after each iteration taking the whole time inter- E\.\
i 5

val [ 0, T ] as the time window, whereas Figure 4.3a and Figure 4.3b :

\“o

>
" show the waveforms for taking the window size half of the entire time j-
- ..'
:::1 :
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&
interval [ 0, T ]. From Figure 4.2a and Figure 4.2b we find that the -
number of iterations increases as the coupling capacitors inmcrease.

In Figure 4.2a, when there is no coupling capacitors, it takes 4

* iterations to achieve convergence. In Figure 4.2b with the introduo— gg
3 ing of the coupling capacitors, it takes 10 iterations to achieve o
,} convergence. }j
: Comparing the waveforms in Figure 4.2b with the waveforms in 5!
d iy
if Figore 4.3b, one can find the effect of the window sizes on the .
b waveforms. In Figure 4.2b the converged part of the waveforms §§
; increases (propagates) about a half cycle per iteration, while in

Figure 4.3b it increases (propagates) about ome cycle per iteration

FFa"s" s

-

and, hence, needs a fewer number of iterations than in Figure 4.2b to

e 8=

schieve convergence for the entire time interval., It is found that

Y

| o} 2

in Figure 4.3b it takes 6 iterations to achieve convergence, while it

takes 10 iterations to achieve convergence in Figure 4.2b,

-

Y During the iterations, the waveforms oscillate about the exact

solution. Table 4.1 shows the results for different sizes of the time

o
a
i

window under different degrees of coupling capacitance.
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o =2
: =
k- Table 4.1
1% Number of iterations in esch window to reach convergence
‘ k
‘ et
! window size Q=0 e=0.5 Q=1.0 Q=1.5
‘ P L
.f‘ A
: T 4 6 6 6
h R
-, T/2 3 5 5 4 W)
"y T/4 3 3 4 4 m
: o
0 T/10 2 3 3 3 -
'
" T/ 500 1 3 3 3 ~
LS a
® (Q is the ratio of floating capacitance to the ground capacitance) s
> ** Use fixed time step h = T/500 in each window. W
.'; u
: It is easy to conclude that the modified window waveform relaxa- o
" tion method achieves more accurate results with less memory storage W
LA
and less CPU time. The problem that arises with the introduction of g
L
: the modified waveform relaxation algorithm is how to choose the loca-
4
‘“ tion and size of the windows. In other words, how should the time ;:-{
) interval be cut into several subintervals dynamically? This is an -
15 s
g interesting open topic. In the next section we study the convergence N
5 properties of the waveform relaxation methods as a function of the 1
‘ G
coupling and window size.
i
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4.2.2 The Numerical Properties of The Waveform Relaxation Method"

Mathematically, the convergence of the waveform relaxation
method has been discussed in [9]. For an important class of dymamic
systems, MOS digital integrated circuits, it is concluded [9] that
for MDS circuits with a grounded capacitor at each node convergence
is guaranteed for any arbitrary piecewise continuous set of initial

waveforms for the node voltage of the circuit,

In this research, we would like to study the numerical proper—
ties of the waveform relaxation algorithm from a different point of
view: the effect of the system stiffness on this algorithm. Practi-
cally,. in order to investigate the numericeal properties of the modi-
fied waveform relaxation method , we used the same 1linear model of
the MOS inverter as shown in Figure 3.1 to see the effect of stiff-
ness on the transient amalysis of MOS circuits; The implementation
of the waveform relaxation algorithm to this linear test circuit is
shown in Figure 4.4. In Figure 4.4a, at the (k+1)-th iteration, the
node voltage v§+1(t) is determined with the node voltage vz(t) frozen
at vg(t) which is the waveform at node #2 at k-th iteration. Once
Vt+1(t) is found, we go to Figure 4.4b and place a grounded voltage

k+1

source vy (t) at node #1 and solve for v§+1(t). then repeat the

iteration until convergence is achieved.

If the backward Euler formula is used, the iterative procedures

are described by following equations:

-
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k1
Cq,#+C Cy W C
1" g k+1 1 1.8 _ Z¢ 1_
C = *8) Y1~ "1 T (vl-g )
). § n n
cc
- I; '§_n+1 is(tnﬂ)
and
Cy*C, +1 k1 Sz 1
( 8, + hn ) vg.n+1 t o8y ¥1,n+1 n vgtn
bl 11y _Seox L
"3 (M 2 B 1,m1

where h is the size of the time step and v),a+1 18 the voltage of
node #1 at the (k+1)—th iteration at (n+1)-th time point. Equation

(4.8) and Equation (4,9) are solved iteratively until comvergence is

achieved.

The modified waveform relaxation method solves (4.8) and (4.9)
in each time window and concatenates the results yielding the
waveform in the entire time interval. Table 4.2 shows the required

number of iterations in each window to get a comvergemt solution.
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ar

v h=20,1

case C° (R Ty™hy Ty=d, lexl Node eq State oq

1 | 0.01 1.0 1.1 0.92 1.22 1 2 g
2 | 0.0 1.0 1.5 0.80 1.88 2 3 lF“-
3 [1.00 1.0 4.3 0.70 6.17 s 4 )
4 | 0.00 100.0 2.6 0.39 6.80 5 4 ?j
5 | 0.10 100.0 12.1 0.099  122.00 s 7

6 | 0.01 1000.0 11.9 0.0857 140.00 be 10 @
7 {0.10 1000.0 102.0 0.012 8696.00 c* 10 F

as®:greater than 300
be*:greater than 600
c®:greater than 1000

The results in Table 4.2 were obtained with a fixed step size h

= 0.1 s, However, from Figure 4.5 we find that similar results were

obtained with h = 0,01 s and h = 0,001 s, because

the convergence rate of the waveform relaxation method depends om the
window size, that is,

performed. Figure 4.6 graphically illustrates the comvergence charac-

the time increment over which the iteration is

CE

(s

in stiff systems

teristics of the waveform relaxastion method for a given stiff system.

For example, in the case Cc = 0,01 F and g ™ 1000 S, the convergence

rate as a function of the window size is shown in Table 4.3 for a

fixed step size h = 0,1 s,
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Iable 4.3
Convergence as a functiop of window size
Window size # of iterations
43 >600
1s 200
0.5s 90
0.2 35
0.1s 3

Thus, in the first case the waveforms were relaxed over the
entire 4 s interval and over 600 iterations were required for the
iterates to converge to the solution. When the waveforms were parti-
tioned into four windows, 200 iterations in each window were required
to achieve convergence. Finally, Table 4.3 shows that rapid coaver-
gonce of the waveform relaxation method was rot achieved until the
waveforms were partitioned into forty 0.1 s windows. In this case,
the window size (0.1 s) is approximately limited to the smallest time

constants (0.085 s) to achieve reasomable cocvergence speed.

4.2.3 The Waveform Relaxation Method Applied to the State Eguations

The equations for the test circuit in Figure 3.1 can be rewrit-

ten in the following state equation format sssuming is(t) =0,
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v v
Al =al? (4.10)
Y2 Y2
where
A11) = [ —(C, + C.)8y — C.s, 1/DE
A(1,2) = [ -Cogz J/DR
A(2,1) = [ --((!1 + Clg, - C.84 1/DE
A(2,2) = [ -(01 + C.)s, 1/DE
and
IE-C1C2+C°(CI+C2)
Applying the waveform relaxation method to Equation (4.10) yields
v A1) v A o
1 1 2
(4.11)
v o= a2, 14 a2y VY
Applying the backward Euler formula to Equation (4.11) yields
- . r, - p— -
k+1 k+1 k
1/b-A(1,1) 0 Loe1|  [T1,0 Bt ALY oy
k+1
_ - k+1
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Solving Equation (4.12) gives the results in the last columan of
Table 4.2. It is found that if we process the system from the
viewpoint of the state equation instead of the node equation, then
the waveform relaxation technique is not affected by the stiffness of
the system. Unfortunately, in a practical implementation, it is hard
to formulate a large system on the computer in the form of the state

equation.

4.3 Concluding Remarks

Table 4.2 shows that the waveform relaxation method does not
work well for the analysis of linear stiff systems. The waveforms of
each iteration oscillate asbout the solution, and an excessive number
of iterstions are required for comvergence [21,22], unless the time
windows are approximately the size of the smallest time constant of
the system. Since the time window is limited to the size of the smal-
lest time comstant, in order to achieve convergence in a few itera—
tions, sn excessive number of time windows are required to cover ome

simple transition of the waveform.

The accuracy and convergence properties for the waveform relax—
ation method have been studied in [9]. In this chapter, we have shown
that, in the modified waveform relaxation method, the flexibility of
setting the time window saves both the computation time and the
memory storage. Although the convergence of the original waveform
relaxation method is guaranteed for any arbitrary piecewise continu-

ous set of initial waveforms [9], its convergence is slow in stiff
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CHAPTER 5

EVENT-DRIVEN AND LATENCY SCHEMES

Previous works such as MOTIS-C, SPLICE and RELAX showed that
congsideradble improvement in speed cam be achieved with the exploita-
tion of relaxation techniques. But they were limited to the simula-
tion of MDOS circuits. A dominant factor which yields the performance
improvement for these simulators is the use of simplified device
models, Hence, in this study we investigate the performance of the
time—point relaxation method for the simulation of both MOS and bipo—
lar digital circuit technologies. Performance is also investigated as

a function of the device model.

The time—~point relaxation method is implemented in the general
purpose circuit simulator SLATE [8], and contrary to other relaxatiomn
simulators, such as MOTIS, SPLICE, and RELAX, accurate analytical

device models are included in the simulator.

3-1 Brief Review of the SLATE Progzrsm

The tearing approsch [8] decomposes s system into certain sub-
systems. There are two tearing methods, namely, the node tearing
decomposition and the branch tearing decomposition., The former is

preferred (8] and is implemented in the SLATE program. As showa in

Figure 2.3, the entire circuit is decomposed into several subcir
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tion matrix equation as follows:
Tee T |ve . Tes (5.2)
rt Y}r Ve Ir:
where
Tee = Ter 'igi Tyat (Tep) Ty
and
J:s = Jis -igi Ytsi‘rsi)-ljssi

Equation (5.2) is solved to obtain solutions for v, and Vo and next
eackhk subcircuit can be solved by using backward substitution. For
example, the resulting modified nodal equation in SLATE for the cir-

cuit in Figure 5.1 yields:
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’ systems and requires a large amount of memory, whereas the time—-point
& .
Q9 relaxation techmique only suffers the former weakness. Thus, it was
;-f: concluded that one is better off using the time—point relaxstion
el mothod in & special purpose circuit simulator for digital circuits.

, »

% In the next chapter we describe how the SLATE program (8] was
~ modified to include time—point relaxation. Then its performance for
'*ﬁ the transient analysis of digital circuits implemented in various
W5

4 technologies is given.
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F:§ | ‘..‘
~ 11 x| x v =T (5.3) -
3 ______‘___i________ 11 11
, 1 X x X X X vy Iy y. h

:";" ' L
& 2 |x x X |x x vy I, =
4

E:. 4 |z x : x x A 3,
6 x x ’ x x \ 6 ."-':

o+ i,
i 9 X X ;X x v J ;

i l 1 L9 9] M
% 8
& Following the procedure in SLATE, the first step is to LU fac- Y
& tor the block triangular temms in order to compute the tearing node
A voltages Vas V4o Vg and Vg, Then the internal node voltages for each ‘f
wf .
;’g ) subcircuit can be determined by backward substitution. .5“

In SLATE, because of the use of tearing, only one subcircuit

-y

'_.
Ay
’

description for each type of repetitive subcircuit need be stored, -

3 and only one set of sparse matrix pointers of the small submatrix for

each type of repetitive subcircuit is needed so that both storage and

3
7 preprocessing times can be saved. If one type of subcircuit 1is j:.
linear, then the LU factorization of that type of subcircuit need be ‘b‘
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Yy cuits, The nodes of each subcircuit can be classified as the interasl ]

i

,; nodes and the externsl (tearing) nodes. After partitioning (which is

' done by the user), the initial step in the solution strategy of the

node tearing method is to reorder the modes such that all the tearing '3

3 nodes are located on the border while the internsl nodes for each

) iy
subcircuit are located on the diagonal blocks., The resulting modi~ '\"3‘4

¢ fied nodal equation of the node tearing decomposition from [8] is as &

gl T

[ follows:

i | [ Y R N R “
- Te1 | Tger | Vo1 Tss1 e
' I l o
< T 0 | Tet2 l Va2 Tee2
- ' . ’ o . . ;—;
. . L L ] L) a
v- L] I . ' L L]
e 0 . ' . { . = . (501) 5_5
! 0 ' . | . . ':?S
Ysk ; Yotk Vsk Tssk
it | b B i 2
" o1 Yea2 © ¢ 0 ¢ 0 ¢ Teaxy Tee 0 Yoo || Ve Tes -
f‘;‘ ] Y |
:: i 0 | rt | Yz:x'_J Vr Tes

r
[
|
i

“v v

taldl,

where v“ is the set of the internal nodes for the i-th subcircuit,

. \£ is the set of all the tearimg nodes, and Ve is the set of the

« nodes for the 'rest’’ of the circuit ("rest’: the remaining part of \:
% the circuit after all the suboircuits are removed). G
: RS
A L0
&

s The procedures for solving the equations in SLATE are first: E
! eliminate all the Ytsi via LU factorization to get the intercomnec- ‘\~:
W) e
|

I'i
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We use the same circuit in Figure 5.1 to illustrate the parti-
tioning and solution procedures in the implementation of the relaxa—
tion technigue, In order to apply the modified Gauss—Seidel

approach, Equation (5.3) is partitioned as follows:

1 4 2 3 5 6 7 8 9 1011

B ] Ar 7 7 7
1 x | X x x Y1 Jl
4 x| x x 4 1,
2 -;-— T-;-~; -7_ X x vy 12
3 x| x x x| AL Iq
o I S T | |
6 x lx x | x x Ve I= | T (5.4)
7 x ix x x| AL} Iq
8 b 4 4_ __x_ x| o v8 18
9 x | X x Yo 19
10 x l X x X Y10 ;[10r
11 I x : x | L.\71i :1‘1-

From the algorithm of the modified Gauss—Seidel method, Va and
. .
Vg are relaxed by using s predictor \( for V7, and a predictor vg for

Vs; then, the variables V9, V3 and Vs of the first subcircuit are

solved from the 3x3 matrix. The rest of the subcircuits are solved
one at a time sequentially in a similar manner. In order to use the
same matrix pointers for identical subcircuits, the tearing nodes and

the DC power supply nodes are split in program implementation, such
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clic. From the viewpoint of circuits, the topological ordering is
possible only for one-way circuits. If feedback loops exist in the
circuit, the directed graph G is no 1longer acyclic. The directed
graph G is said to have strongly comnected components (SCC) for cir
cuits with feedback. The stromgly comnected compoments of the
directed graph G can be found in linear time complexity by using

Tarjan’s algorithm [24].

For the circuits with feedback loops, basically, there are two
approaches for sequencing the vertices in the directed graph G. Ome
is to contract the strongly connected components into onme new subcir-
cuit, which results im a new acyclic directed graph G' [25). The
problem with this approach is that the size of the subcircuits after
contraction could become too large for the analysis to be efficient,
In large—scale circuit simulation one should always try to keep the
size of the subcircuits small to make the analysis time limearly pro-
portional to the size of the entire circuit. The other approach
processes the directed graph G directly without any comtraction by
breaking the feedback loops. Predictors are used for the decoupled

terms.

The algorithm used in SLATE-R combines the above two approaches.
First of all, the Tarjan's algorithm is implemented to detect the
strongly conmected components (SCC) in the directed grapk G and col-
lapses each SCC into one new vertex which results in & new acyclic
directed graph G’, Then a topological ordering is chosen as the order

in which the vertices in the new directed graph G’ are processed dur-
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. -
. done only once. The other benefit for using the tearing method is )
¥ the exploitation of 1latency. During the anslysis, only the active (1
3 i
N parts of the circuit need to be solved and this reduces the computa- -
tional time considerably. g‘
pj

However, there are additional features that could be added to

ey e s

SLATE to shorten the simulation time. For example, no event schedul-

ing techniques are being used in SLATE, and there is no decoupling

scheme in SLATE so that the entire cirouit matrix must be inverted.

R T X S

The idea and implementation of the SLATE-R program (a Simulator with

Latency and Tearing —Relaxed version) are shown in the next sec—

a3

PR,
o
WA A

4

tions.,

[ &) 4H

5.2 The Relaxation Technigue

' , :I

The first procedure of the relaxation decomposition is the same

ALY,
2

as that of the tearing decomposition: partition the circuit into sub-

o
R

s circuits, Current versions of those simulators which use the decom

-
- 3

r
RS,

\ position technique opartition the circuit via the defimition of sub-

circuits that is specified by the user. The only differemce in the

=3

input processes of the circuit file between SLATE and SLATE-R is

SLATE-R has to ideatify the fan—in and fan—out nodes for each subcir-

ks

cuit while SLATE only needs to record the external nodes no matter if

i)
i:: they are fan-in or fan-out nodes. In SLATE-R the circuit input file j-:;
Q. L
)

::ﬁ is changed such that it 1is easy to identify the fan-in nodes and )
i ]
-~ fan-out nodes. In the next chapter we describe the process of the

A8

{ cirouit input file in the SLATE-R program. g;‘
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We use the same circuit in Figure 5.1 to illustrate the parti-
tioning and solution procedures in the implementation of the relaxa-
tion technique. In order to apply the modified Gauss—Seidel

approach, Equation (5.3) is partitioned as follows:

1 4 2 3 5 6 7 8 9 1011

- | ol i I e

1 x l x x x vy Iy |
4 x| x x \ I, (
2 .x— | x- -; —T x X \7) 7, :
3 x| x x x| s S

5 x:_ : :i_— _ + Vg Ig |
6 x ‘x x ‘ X x Ve |= | T¢ (5.4) ‘
7 x ix x x| v., 1.1

8 x 4 X xl o Y Tg

9 x | x X A g

10 x | X x x vloe J‘Ioe

11 ] x : x | _vli jli

From the algorithm of the modified Gauss-Seidel method, v, and
[ ]
Vg are relaxed by using a predictor v; for Ve, and a predictor vg for "

Vs; then, the variables Vo, V3 and Vg of the first subcircuit are

solved from the 3x3 matrix., The rest of the subcircuits are solved
one at a time sequentially in a similar menner. In order to use the

same matrix pointers for identical subcircuits, the tearing nodes and

e

the DC power supply nodes are split in program implementation, such
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that each identical subcircuit has the same matrix formation. For the
example circuit in Figure 5.1, the subcircuit one contains nodes 1,
2, 3, 4 and §; subcircuit two contains nodes 1, 6, 7, 2 and 8, with
two voltage sources (and two corresponding current variables) in each
subcircuit, the relaxation approach needs to solve three 7x7 subma-

trices, while the SLATE program is to solve one 13x13 matrix.

3.3 Event-Driven Technigue

In the solution strategy of the relaxation techniques, oance the
whole circuit has been partitioned into several subcircuits, the next
procedure, which is called the event-drivenm technique, is to sequence
the subcircuits to be simulated, i.e., to select a well-chosen order—
ing in which the subcircuits are to be processed. In our research,
event—-driven algorithms will be implemented on the basis of famin
fan-out topologies, such that the resulting mod.fied mnodal equation
is in the form of Equation (5.4) with the internal nodes and fanm-out

nodes of each subcircuit in diagonal blocks.

A cirocuit that is composed of unilateral subcircuits can be
represented by a directed graph G(V,E), where each vertex in V
corresponds to each subcircuit and each edge in E corresponds to each
signal 1line from fanm—-out to famin. A 'good’ ordering will be one in
which a subcircuit is processed only after all its fan—in subcircuits
have already been processed; in other words, the event-driven tech-
nique is to arrange the vertices in a topological order. However, the

directed graph G has a topological ordering if and omly if it is acy-
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clic, From the viewpoint of circuits, the topological ordering is
possible only for one—way circuits. If feedback loops exist in the
circuit, the directed graph G is no 1longer acyclic. The directed
graph G is said to have strongly comnected compoments (SCC) for cir-
cuits with feedback. The strongly connected compoments of the
directed graph G can be found in linear time complexity by using

Tarjan’s algorithm [24].

For the circuits with feedback loops, basically, there are two
approaches for sequencing the vertices in the directed graph G. One
is to contract the strongly connected components into one new subcir-
cuit, which results in a new acyclic directed graph G’ [25]. The
problem with this approach is that the size of the subcircuits after
contraction could become too large for the analysis to be efficient.
In large—-scale circuit simulation one should always try to keep the
size of the subcircuits small to make the analysis time linearly pro—
portional to the size of the entire circuit. The other approach
processes the direocted graph G directly without any coatraction by
breaking the feedback loops. Predictors are used for the decoupled

terms,

The algorithm used in SLATE-R combines the above two approaches.
First of all, the Tarjan’s algorithm is implemented to detect the
strongly connected components (SCC) in the directed graph G and col-
lapses each SCC into one new vertex which results in a new acyclic
directed graph G'. Then a topological ordering is chosen as the order

in which the vertices in the new directed graph G’ are processed dur-
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ing each iteration. In order to set up the order in which the subcir-
cuits within each SCC are processed, the following algorithm [26] is
implemented to set up the analysis sequences. In order to describe

the algorithm, the following notatioms are introduced:

G cc(V>E): the directed graph of each SCC.

adj(v): set of adjacent vertices corresponds to the set of ver—

tices with an edge which fans out to vertex v.

la(v): label of vertex v.

Procedure
[{1] Set la(vi) = 0 for each vertex A of G‘cc(V.E)

[2] 2. la(vi)-l for each vertex v; which corresponds to an input

signal terminal.
k’l.
[3] Ek=k+1

Choose a vertex 'j where lt(vj)-o and la(vi)#o for all v, ¢
ldj(vj). If there is no such vertex, choose a vertex vj connect—
ing to a vertex which has the lowest label.

l:(vj)-k.

[4] Repeat step (3) until all the vertices in G__ (V,E) are labeled.

sce

It is claimed in [26] that the above algorithm can find all

feedback 1loops which will be broken during the analysis sequencing.
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For arbitrary networks, this algorithm may not be satisfactory in
identifying minimal feedback 1loops as other complex algorithms do
[27). However, because the accurste device models are used in SLATE,
coupling parzaeters such as the floating capacitor from drain to_glto
in MOS devices and the terminal resistance at each leg of the bipolar
transistor devices will cause the subcircuits to have a certsin
degree of coupling. In this case, our solution strategy is to label
the vertices in sense of 'Uepth—first search’’ approach and to use a
predictor to cut all the feedback loops. Another fact is that itera—
tions among subcircuits are continued until comvergence is reached.
The worst case for ‘‘improper’’ ordering is at most the necessity to
process one more iteration at each time point. Gemeral slgorithms
are not cost effective because the complexity grows exponentially
with the size of the network [27]. For these two reasons we imple—
ment the simple analysis sequencing algorithm in our program. In the
next section, we will describe the concept and experimental results

of latency exploitation,

2.4 Latency Exploitation

In large—-scale circuit analysis, a part of the circuit may be
not active at any given time and at any particular iteration. This
phenomenon is called latency [28]. Exploitation of the 1latency can
provide savings in CPU time. In the program SLATE, the latency con—
copt is implemented at three levels: (1) device level; (2) subcircuit

lovel; and (3) network level.
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Wy
X @
b At the device level, the operating point of each nonlinear dev- |
E
:' dce is monitored. If the operating point does not change signifi- S.i
) o]
Ka . cantly between time points or Newton-Raphson iterations, the device
: Y models need not be reevaluated, and the matrix entries computed at E
. L
i: the previous time point or the previous iteratiom are used again. .
! -
) o
Xy This level of latency is also called the device bypass level which is i
” used in SPICE2 and SPLICE. Because the node tearing method is imple- %
.‘:\_ .
o mented in SLATE, the latency strategy can be used in the network
‘Y, 3

level through the exploitation of the substitution theorem 1in the

&l
»
K

_ formulation of intercomnections [8). VWhile with the relaxation -
S method, there is no bordered interconnection matrix, in the SLATE-R L
N program we only consider the exploitation of latency at the bypass g
; level and subcircuit level. _
W ¥
) The relaxation method deals with each subcircuit individually, U
$’ with the use of the ptedictor to decouple the coupling tem#. There— g
fore the exploitation of the latency can be implemented at the sub-
§ : . circuit 1level, either in the Newton—Raphson iteration or at the time \b
: point level. The idea is that if there is no significant change "
between NewtomRaphson iterations or time points, then the latent r'i'
.¢: subcircuit can be skipped in the analysis, The 1latent status of a
: ad

subcircuit can be checked by monitoring the changes of all its

stimuli and all its responses to ensure that the change is within

St
X -
Sty

%5 certain predetermined tolerances.

R [
1 835 IEx

AR » | K i
s %S, (N % ?,
A A3 L“ 35,%54 A el



R S B 53 B

e
-

P

B 53

el

5‘-7.:5.1

S B T

83

$.4.1 The Latency Criterion

P1,2,..., and the internal and output node voltages of Ni as v

q=1,2,.. . The folloiing latency scheme is implemented in the

For the subcircuit N,, denote the fan—in node voltages as v;, ,
P

ok °*
q

SLATE-R program.

Latency Scheme:

[1]

(2]

the

A subcircuit Nk is considered to be latent at time t_  if the

following two conditions are satisfied:

l vik ‘tn) - vik (tn-l) l < 8‘ + stllx(lvik (tn)l'lvik (tn—l)l
P P ) P

rllzlooo

l Yok, (ta) = Vor (ta1) I <y + srmux(|v°kq(tn)|.|vokq(tn_1)|

q'l,z....
The subcircuit Ny will remain latent at time tn#j as long as
' vikp(tn"'j) - vikp(tn"].) I 4 L +

eoomax (| owyy (b ) b Fwyy (ep ) |
P P

r=1,2,...

If the subcircuit is not latent in time, we can still consider

latency in Newton—Raphson iterations, A suboircuit Nk is con—

sidered to be latent at time t, during the ith NewtonRaphson
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%ﬁ iterations if the following two conditions are satisfied: L
"
Bl r\-“
A 4
e
) (1 1wy (epd-1) = vy ,4=2) | C g + 2
o ) P
6 o 4
W
' ]
¥ 't nax ( l vik (tno 1-1) l » l vik (tnn 1-2) I ':
o P P i
» rl 02 PN ]
\'» [2] ' vok (tn, i"l) - Vok » 1-2) ' < 3‘ + g
i q q
S {
,: ¢. max ( | vokq(tn.t-l) 1, 1 vokq(tn,i-Z) | h
%
W
Fl 02 FX N N ] %
At
{' «::
32 3.4.2 Experimental Results for Latency Exploitation
;; The latency scheme described in the last section has been suc- !g
20
QF cessfully implemented into the relaxation version of the program E%
'n k9
¢ SLATE. Table 5.1 and Table 5.2 give the simulation data corresponding
i? to the circuits shown in Figure 5.2 and Figure 5.3 respectively. In 53
ii order to see the latency exploitation at the Newton—Raphson iteration .
..‘.. ‘-
X level, here the dc analysis is performed, while Table 5.3 gives the 55
ié simulation data for the circuit shown in Figure 5.4 for both DC FQ
“"r \.‘(_\

spalysis and transient analysis.
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l Table 5.1 Simulation data of a DC analysis _
N for the MOS circuit in Figure 5.2 s
<0 X
E:{ '_::L

& DC Analysis With Latency | Without Latency al
K

(o

@ # of subcircuits g‘

L times # of 275 275 KN

iterations

. W

et '

# of nonlatent »y

e subcircuits times 157 N
) # of iterations (A
%‘: Latency exploitation (%) 42.91 'U
. _ e

i Total CPU time (sec) 5.63 7.68 Sk

gt

\

E& Savings in CPU 26.69 o

time (%) &,
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-. Table 5.2 Simulation data of a DC analysis bed
2 for the MOS circuit in Figure 5.3 7
R A
] L9
)
" DC Analysis With Latency | Without Latency]
K N
b # of subcircuits ' ::f:{
W times # of 391 39 t
iterations
j # of nonlatent -~
Ny subcircuits times 214 -
{ # of iterations .3
“_ Latency exploitation (%) 45.27 r\;g
e |
1! e
o Total CPU time (sec) 11.87 14.82 %
‘ B
Savings in CPU 19.91 O
sy time (%) Lt
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Fig. 5.2 (a)
(b)

Subcircuit: An MDS Inverter Gate.
Entire Network: A Chain of Inpverters,
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In these tables we find that the savings in CPU time is not the
same for the latency exploitation, For example, in Table 5.1, for the
11-stage chain of inverters, a 42.91% latency exploitation was
schieved and s 26.69% savings in CPU time was obtained, because some
of the CPU time has to be spent in the latemcy checking which makes
the, difference between the percentage latency exploitation and the
percentage savings in the CPU time. In Table 5.2, for the Binary-
to-Octal decoder, a 45.27% latency exploitation was achieved and a
19.91% savings in CPU time was obtained, because the latency exploi-
tation only counts the number of those latent subscircuits, and all
the stboircuits are preassumed to have the same size., However, the
subcircuits may have different sizes which also make the difference
between the latency exploitation and the CPU time savings. From
Table 5.3, for the ome-~bit full adder, 2 14.75% savings in CPU time
was achieved in DC analysis and & 22.91% savings in transieat
analysis was achieved, because in transient analysis we can take the
advantages of the latency exploitation in the NewtonRaphson itera-

tion level as well as the advantages of latency exploitation in the

time level.
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Table 5.3a Simulation data of a DC anmalysis
for the MOS circuit in Figure 5.4

o

DC Analysis With Latency | Without thoncy‘

<3

# of subcircuits
times # of 150 150
iterations

Isharn]
et

RS

# of nomlateat
subgcircuits times 107
# of iterations

==

% Latency exploitation (%) 28.67

1Y

ﬁ Total CPU time (sec) 6.18 7.25
i Savings in CPU 14.75

oy time (%)
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Table 5.3b Simulation data of a transient analysis
for the MOS circuit in Figure 5.4

Transient Analysis

¥With Latency

Without Latency

# of subcircuits

times # of 840 840
iterations

# of nonlatent

subcircuits times 597
# of iterations

Latency exploitation (%) 28.92

Total CPU time (sec) 31.95 41 .45
Savings in CPU 22.91

time (%)
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3.3 Numerical Properties

In Chapter 3, the linear test circuit in Figure 3.1 has been
used to study the numerical properties of the Gauss—Seidel tech—
niques, This test circuit was generated by linesrizing the model of
a8 cascade of two inverters in which the transistors are assumed to be
active. By changing the parameters, i.e., the coupling temm Cc and

the signal gain g, we can adjust the degree of stiffness in our

linear test circuit,

In practical circuits, the coupliag terms and the signal gains
are technology—oriented. In this section, differemt techmologies
such as NMOS, CMOS and bipolar junction transistors are used to
implement the cascade of 1 two imverter test circuit, The NMOS
inverters and CMOS inverters are shown in Figure 5.5 and Figure 5.6,
respectively. Figure 5.7 shows the TIL circuit, Figure 5.8. shows the

ECL circuit. Table 5.4, Table 5.5, Table 5.6 and Table 5.7 show the

corresponding simulation data.
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o The input file for the circuit in Fig, 5.5 B

. &
) a 11-stage chain inverter circuit
‘; *inverter ’ W
N .subckt inv 10 30 20 2 "
o ¢e% nodes: vdd imput output -
4 ml 10 20 20 0 dm w=5 1=10 -
+ 8s=25 ad=25 ass~1S5 asd=20 cgs=1.725f cgd=1.725¢
~ + rdd=35 rss=35 A
. 22 20300 0 em w=10 1=5
by + 23=100 ad=100 ass=40 asd=35 cgs=3.45f cgd=3.45f ¥
+ rdd=35 rss=3$
Pk .onds
®* nominal circuit )
W vdd 10 0 5 1
) vel 9 0 pulse(0 5 0 2a 2n 125a 254n) o
i x1 10 911 inv
b 2 10 11 12 inv
o .model da mmos vto=—2 kp=10u be=0.52 lambda=0.05 kpn=0.0918f
+ 28=0.33 cox=0,345f
._1 .model em mmos vto=1 kp=10u be=0.52 lambda=0.05 kpn=0.0918f o
v, + n3=0.33 cox=0.345f
] .print tran v(9) v(10) v(11) v(12)
b .tran 1n,50n
.end iy
ags
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Fig. 5.6 CMOS Circuits.

The input file for the circuit in Fig., 5.6

a 11-stage chain inverter circuit
*inverter

. subckt inv 10 20 30

%8¢ nodes: vdd input output

ml 10 20 30 10 eml w=5 1=5

+ as=25 ad=25 ass=15 33d=20 cgs=1.725f cgd=1.725f
+ rdd=35 rss=35

a2 30200 0 em2 w=12.5 1=5

+ as=100 2d=100 ass=40 asd=35 cgs=3 .45f cgd=3.45f
+ rdd=35 rss=35

.ends

* nominsl circuit

vdd 100 §

vel 9 0 pulse(5 0 0 30n 2a 60n 40n)

x1 10 9 11 inv

x2 10 11 12 inv

.model eml pmos vto=-1 kp=8u be=0.52 lambda=0.05 kpn=0.0918f
+ ms=0.33 cox=0,345f

.model em2 mmos vto=1 kp=20u be=0.52 lambda=0.05 kpn=0.0918f
+ mns=0.,33 cox=0,345f

.print tran v(9) v(10) v(11) v(12)
.tran 1n,50n
.end
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The input file for the circuit in Fig. 5.7

Bipolar TIL inverter

.subckt inv 1 9 8 2

¢ input node(1l) output node (8)

rl 9 2 4

2 4 0 1k

£3 95 1.4k

4 9 6 100

ql 3 21 bjp

q2 53 4 bjp o

a3 6 57 bjp ui

q4 84 0 bjp Y

d1 7 8 diode

.ends »

x1 293 inv X

x2 3 9 4 inv

v2 2 0 pulse(0 5 0 30n 2n 60n 40n) Y

vdd 9 0 5 o

.model bjp npn(bf=100 br=0.1 re=100 va=200 nc=1 ne=1

+ cje=2p cjc=2p ccs=2p) S

.model diode d(rs=10) >

.print tran v(2) v(3) v(4) o

.tran 12,30n £

.end =
aY |
:
'
B
RS,
N2
]
’_::
-
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Bipolar ECL inverter
.subckt inv 7 8
®* input node(7) output node(8)

rl

x2

v2 2 0 exp(-1.5 1.5 0 30n 2n 60n 40n)

.model bjp npn(bf=100 br=0.1 rb5=200 va=200 nc=1 ne=1
cje=2p cjc=2p ccs=2p)

.print tran v(2) v(3) v(4)

+

The input file for the circuit in Fig. 5.8

10300

3 4 inv

.tran 1n,30n
.end
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NMOS inverters with signal gain =

time

0
.5000e-10
.1000e-09
«3000e-09
.1100e-08
.2000e-08
.2050e-08
«2100e-08
.2300e-08
+3100e-08
.5100e-08
.7100e-08
.9100e-08
.1110e-08
.1310e-08
.15100-08
«.1710e-08
.1910e-08
.21100-07
2310007
+2510e-07
«2710e~07
+2910e-07
.3110e-07
3310007
+35100-07
.4710e-07
«3910e-07
.4110e-07
.4310e-07
«4510e-07
.4710e-07
4910e-07
.5000e-07

IK rN ' -
A AT R AR VAT AR

time step

0
.5000e~-10
.5000e-10
«2000e—-09
.8000e-09
.9000e-09
.5000e-10
.5000e~-10
.2000e-09
.8000¢-09
.2000e—08
.20000~-08
.20000—-08
«2000e-08
.2000e-08
.2000e-08
«2000e-08
«2000e-08
.20000-08
.20000-08
.2000e-08
+2000e-08
+2000e-08
.2000e~-08
.2000e—-08
.2000e-08
«20000-08
.2000e-08
«20000-08
+20000-08
.20000-08
.2000e-08
+2000e-08
.9000e-09

Jable 5.4a

(SLATE-R)

coupling

0
-48298¢—03
.48298¢-03
+24149e-03
«603740-04
«53664¢e-04
.48297¢-03
+96593 03
«24147¢-03
.60373e-04
+23489e-04
+19379e-04
«18400e-04
.18400e-04
.18400e-04
.18400e-04
.18400e-04
«18400e-04
.18400e-04
.184000-04
.18400¢-04
.18400e-04
.18400¢-04
.18400e-04
.18400e—04
.18400e-04
.18400¢-04
.18400¢-04
+18400¢-04
.18400¢-04
+18400e-04
.184000-04
.18400e-04
.40889¢-04

........

I'O
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# of iterations

.............
DRI

) e_.\-a_g.n.l.!_l

100 .

2o

AP

S% |



b

A
i

ht &

T OO 5 W -

-
>
A |

a

¥

A

.
Tyt

™

55 i

.',

S

il
,,l‘_l‘

LS

.-

P

WWWWRNNDNRNNRNNNNDND MR
WRNHOVRXAINNLWNHOLVIIAMIWNROPRIAUKIVWMD O

time

0
.5000e-10
.1000e-09
+30000-09
.1100e-08
.2000e-08
.2050e—-08
.2100e-08
.2300e-08
.3100e-08
.5100e-08
.7100e-08
.9100e-08
.11100-08
.1310e-08
.1510e-08
.1710e—08
.1910e-08
.2110e-07
.2310e-07
.2510e-07
.2710e-07
.2910e-07
.3110e-07
.33100-07
.3510e-07
.4710e-07
+3910e-07
.4110e-07
.4310e-07
«4510e-07
.4710e-07
.4910e-07
.5000e-07

time step

0
.5000e-10
.50000-10
+2000e-09
.8000e-09
.9000e-09
.5000e-10
.50000~10
«2000e-09
.8000e-09
«2000e-08
«20006-08
+2000e-08
+2000e-08
+2000e-08
+2000e-08
+2000e-08
+2000¢-08
<2000e-08
+2000e-08
«2000e-08
+20000-08
.2000e-08
+2000¢-08
«2000~08
.2000e-08
«2000e-08
.2000¢-08
.2000e-08
«2000e-08
+20000-08
.2000e~08
.2000e-08
+9000e-09
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Table 5.40b

NMOS inverters with signal gain = 9.5

(SLATE)

# of iterations
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Table 3.5a

Al I Sl

CMOS inverters with signal]l gain = 11.7

time

0
.5000e-10
.1000e-09
+3000e-09
.1100e-08
«3100e-08
+5100¢-08
.7100e-08
+9100e-08
.1110e-07
.13106-07
.1510e-07
.1710e-07
.1910e-07
2110e-07
«2310e-07
+2510e-07
2710007
.2910e-07
.3000e—-07
+3050e-07
.3010e-07
.30300-07
3110007
«3310e-07
.3510e-07
.4710e-07
«3910e-07
-4110e-07
.4310e-07
.4510e-07
.4710e-07
.49100-07
.5000e-07

time step

0
.5000e-10
.5000e-10
«2000e-09
.8000e—-09
.20000-08
«2000e-08
«20000-08
«20000-08
«20000-08
.20000-08
.20000—-08
2000008
.2000e-08
.2000e~08
.20000-08
.2000e-08
.20000-08
+2000e-08
<9000e-09
.5000e-10
.5000e~-10
.20000-09
.8000e-09
.2000e-08
.2000e-08
.2000e~-08
.2000e-08
.2000e-08
.2000e-08
200008
.2000e-08
«2000e-08
.9000e-09

(SLATE-R)

coupling

0
.81705¢-03
.81705¢-03
.40537¢-03
.83374¢-04
33350004
.333500-04
.33350e-04
+33350e-04
.333500-04
+333500-04
.33350e-04
«33333¢-04
«375450-04
+37662¢-04
.37662e-04
+37662e-04
+37662¢-04
+37662¢-04
.83674e~04
+75325e-03
.15065¢-02
«376620-03
.94155¢-04
+37662¢-04
+376626-04
«37662e-04
«37662¢-04
.37662e-04
+37662¢-04
«37662e-04
+37662e-04
.37662e-04
+83694¢-04

# of iterations
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' Table 5.5b
(;: CMOS inverters with signal gain = 11.7
a\_‘
t (SLATE)
)
s time time step # of iterationms
'S,
3 0 0 0 13
1 .5000e-10 .5000e~10 2
-3 2 .1000e-09 .5000e-10 2
-~ 3 .30000-09  .2000¢-09 3
4  .1100e-08 .8000e-09 3
5 .3100e-08  .20000-08 3
6 .5100e-08 .20000-08 3
7 .7100e-08  .2000¢-08 3
oy 8  .9100e-08 .2000e-08 3
3 9  .1110e-07  .2000e-08 3
- 10 .1310e-07 .2000e-08 3
- 11 .1510e-07 .20000-08 3
Ii 12  .1710e-07 .2000e-08 4
13 .1910e-07 .20000-08 5
) 14  .2110e-07 .2000e-08 5
&§ 15  .2310e-07 .2000e-08 3
g 16 .2510e-07 .2000e-08 7
17 .2710e-07 .2000e-08 3
18  .2910e-07 .2000e-08 3
l! 19  .3000e-07 .9000e—-09 3
20 .3050e-07 .5000e—-10 3
. 21 .3010e-07 .5000e-10 2
2§ 22 .3030e-07  .2000e-09 3
s 23 .3110e-07 .8000e-09 3
24  .3310e-07 .2000e-08 3
» 25  .3510e-07 .20000-08 3
e 26  .4710e-07 .2000e-08 3
27  .3910e-07 .2000e-08 2
S 28  .4110e-07 .2000e-08 2
o 29  .4310e-07  .2000e-08 2
' 30 .4510e-07 .2000e-08 2
- 31  .47100-07 .2000e-08 2
) 32 .4910e-07 .2000e-08 2
. 33 ,5000e-07 .9000e-09 2
47
ul
¥7
]
B IS e A S e e ey g e Ny TN e i LU O L TN A A I

LA R

-

| A



" 0 x4
o

aa

> Foitelw 2 e O e
¥ A & "

CONAWNEWN MO

time

0
.5000e-10
.1000e-09
.3000e-09
.11000-08
«31000-08
.51000-08
.7100e-08
.91000-08
.1110e-07
.1310e-07
.1510e-07
.1710e-07
.1910e-07
211007
+2310e-07
.2510e-07
«2710e-07
.2910e-07
.3000e-07

time step

0
.50000-10
.5000e-10
.20000-09
.8000e-09
.2000e-08
.20000-08
.2000e-08
.20000-08
«2000e-08
«20000-08
«2000¢-08
.20000-08
+2000e-08
.20000-08
.2000e-08
+2000e-08
«2000e-08
+2000e-08
.9000e-09

Table 5.6s
IIL igverters with re=100

(SLATE-R)

coupling

.10000e-01
.10000e-01
.10000¢-01
.10000e-01
«10000¢-01
«10000e-01
+10000e-01
+10000e-01
.10000e-01
.10000¢-01
.10000¢-01
.10000e-01
.10000e-01
+10000e-01
.10000e-01
.10000e-01
.10000e-01
.10000e-01
+10000e-01
.10000e-01
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# of iterations

The coupling is the conductance of the emitter resistance re=100.
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time

0
.5000e-10
.1000e-09
.30000-09
.1100e-08
+3100e-08
510008
.7100e-08
.9100e-08
.1110e-07
.13106-07
.1510e-07
.1710e-07
.1910e-07
21100-07
+2310e-07
.2510e-07
.2710e-07
.29100-07
.3000e-07

JIL igverters with re=100

time step

0
.5000e-10
.5000e-10
«20000-09
.8000e-09
.2000e-08
«.2000e-08
2000608
.2000e-08
«.20000-08
«20000-08
2000008
+20000-08
.20000-08
«2000e-08
«20000-08
.20000-08
.2000e-08
.2000e-08
.9000e-09

Isble 3.6b

(SLATE)

# of iterations
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Isble §.6¢ b
IIL ipverters with re=10 &l
' (SLATE-R)
2 W
} time time step coupling # of iterations
4 0 0 0 .10000¢-01 40 e
1 .5000e-10 .5000e-10 ,10000e-00 5
’ 2 .1000e-09 .5000e-10 .10000¢-00 5
A 3 .3000e-09 ,2000e-09 .10000e-00 5 ]
K- 4  .1100e-08 .80000e-09  .10000e-00 7 b
I 5  .3100e-08 .2000e-08 .10000¢-00 7
& 6  .5100e-08 .2000e-08 .10000¢—00 7 Ly
‘ 7  .7100e~08 .20000~08  .10000e-00 7 Y
a 8 .73500-08 .2500e-09 .10000e-00 7 (%) ‘
R 9  .8350e-07 .1000e-08 ,10000e-00 29 ¥
10  .1035¢-07 .2000e~08  .10000e-00 18 ti
- 11 .1235¢-07 .2000e-08  .10000¢-00 13
12 .1435¢-07  .2000e-08  ,10000e-00 14 o
” 13 .1635¢-07 .2000¢-08 .10000e-00 9 s
14  .1835¢-07 .2000e-08 ,10000e—00 9 a
; 15  .2035¢-07  .2000e-08 ,10000e-00 7 ,
+ 16  .2235¢-07  .2000e-08  ,10000e~00 7 %.;
L 17  .2435¢-07  .2000e-08  ,10000e—00 9 3
Y 18  .2635¢-07 .20000-08  ,10000e—00 7
: 19 .2835¢-07 .2000¢-08 .10000e-00 9 =
o 20 .3000e-07 .1650e-09 ,10000e-00 9 E
i

(*): The original time step can not comverge within 50 iterations,

with the reduced time step being used.
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The coupling is the conductance of the emitter resistance re=10. o
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CONANEWN MO

time

0
.5000e-10
.1000e-09
.3000e-09
.1100e-08
+3100e-08
.51000-08
.7100e-08
«9100e-08
.1110e-07
.1310e-07
1510e-07
.1710e-07
.1910e-07
«2110e-07
«2310e-07
2510007
2710e-07
.2910e-07
«3000e-07

Isble 3.64

IIL inverters wjith re=10

time step

0
.50000-10
.5000e0-10
«2000e-09
8000609
.20000-08
.20000-08
.2000e~08
.2000e-08
.2000e~-08
+.2000e-08
.20000-08
.20000-08
+2000e—08
«2000e-08
«2000e-08
.2000e~08
«20000-08
.2000e-08
.9000e-09

(SLATE)

# of iterations
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time

0
+5000e-10
«1000e-09
+3000e-09
«1100e-08
«3100¢-08
+51000-08
+7100e-08
+7350¢-08
+8350e-07
.1035¢-07
123507
14350-07
«1635e-07
1835007
+20356-07
«22350-07
«24350-07
«2635e-07
.28356-07
«3000e-07

with the reduced time step being used.

time step

0
+5000e-10
+5000e-10
+20000-09
.8000e-09
+2000e-08
«2000e-08
«2000e-08
«25006-09
.1000e-08
+2000e-08
+2000e-08
«2000e-08
.2000e-08
.2000¢-08
«2000e-08
2000008
+20000-08
.20000-08
+2000e-08
.1650e-09

Iable 5.6e
TIIL igverters with re=1

(SLATE-R)

coupling

+10000e-01
.10000e+01
.10000e+01
.10000e+01
«10000e+01
+100006+01
.10000¢+01
.10000e+01
+10000e+01
.10000e+01
.10000e+01
+10000e+01
+10000e+01
.10000e+01
.10000e+01
.10000e+01
.10000e+01
+10000e+01
.10000e+01
.10000e+01
.10000e+01

(*): The original time step can mot converge

6
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12 (*)

within 50
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# of iterations

iterations,

The coupling is the conductance of the emitter resistance re=1,
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time

0
.5000e-10
.1000e-09
.3000e-09
«1100e-08
.31000-08
.5100e-08
.7100e-08
«9100e-08
+11100—-07
+13106—07
.1510e-07
.1710e~07
.19106-07
«21100~07
«2310e-07
«2510e-07
«2710e-07
«29100-07
«3000e-07
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Table 5.6f

TIII, inverters with re=1

( SLATE)

time step # of iterations
0 40
.5000e-10 4
.5000e-10 4
+2000¢-09 4
.8000e-09 7
.2000e-08 7
+2000¢-08 5
+2000e-08 7
«2000e-08 12
«2000¢-08 10
«2000¢-08 12
.20000-08 6
«2000e-08 10
.2000e-08 15
«2000e-08 9
+2000¢-08 10
.2000e-08 8
.2000e-08 6
.20000-08 8
.9000e-09 5
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The coupling is the conductance

time

0
.7812e-12
.1562e-11
.1953e-11
.36150-11
429711
.4687e—11
.6250e¢-11
.7031e-11
.T7422e~11
.8984e-11
.9766e-11
.1016e-10
117210
.1250e-10
.1289¢-10
.1309e¢-10
.1387e-10
.1426¢-10

The original time step can

with the reduced time step

The original time step can

with the reduced time step

110

# of iterations

3

Table 5.7
ECL inverters with rb=100
(SLATE-R)

time step coupling
0 .10000e-01
.7812e-12 .10000e-01
.7812¢-12 .10000e-01
+3906e-12 .10000e-01
.1562¢-11 .10000e-01
.7812e-12 .10000¢-01
.3906¢e-12 .10000¢-01
1562¢-11 .10000e-01
.7812e~12 .10000¢-01
+3906e-12 .10000¢-01
156211 .10000e-01
.7812¢-12 .10000e-01
.3906e-12 .10000e-01
. +1562¢-11 .10000e-01
781212 .10000e-01
.3906e-12 .10000e-01
1953e-12 .10000e-01
781212 .10000¢-01
«3906e-12 .10000e-01

WWWWWWWLWWWWLWWWLWWwWWWWwWs a®n

not converge within

being used.

not converge

being used.

(e*)
(*)

(*)
(*)

(*)
(®)

(®)
()

(*)

(*)
(*)

100 iterations,

within 50 iterations,

of the base resistance rb=100,
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time

0

.5000e-10
.1000e-09
.3000e-09
.1100e-09
.2000e-08
.2050e-08
.2100e—-08
+.2300e-08
+3100e-08
.5100e-08
.7100e-08
.9100e-08
.1110e-07
.1310e-07
.1510e-07
.1710e-07
.1910e-07
2110007
.2310e-07
.2510e-07
«2710e-07
.2910e-07
.3000e-07

Table 5.7

ECL inverters with rb=100

(SLATE)

time step # of iterations
0 1
.5000e-10
.5000e-10
.2000e-09
.8000e-09
.9000e-09
.5000e-10
.5000e-10
«2000e-09
.8000e-09
.2000e-08
.2000e-08
.2000e-08
.2000e-08
.2000e-08
.2000e—-08
.2000e-08
.2000e-08
«2000e—-08
.2000e-08
.2000e-08
.2000e-08
.2000e-08
.9000e-09
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5.6 Concluding Remarks

It is shown in Table 5.4 and Table 5.5 that the simulation
results of the NMOS circuits and CMOS circuits are good and the time
steps used in SLATE-R are identical with those in the SLATE program,
because of the 1low coupling terms with the MOS technologies. CMOS
circuits take slightly more iterations than NMOS circuits due to con~
vergence, because of the higher signal gain and stronger coupling
capacitance with the CMOS technology. From Table 5.6 and Table 5.7,
it is found that for the bipolar tramsistor circuits, the number of
iterations required for convergence is excessive because of the
increased coupling and gain of the input circuits. By changing the
emitter resistance in Table 5.6 to adjust the coupling, it clearly
shows the effect of the coupling on the convergence speed. A limita-
tion on the number of iterations per time point was set in the
SLATE-R program., If the current time step can not reach comvergence
in & certain number of iterations, a new time step is chosen. Com—
pared with the TIL circuits, the ECL circunits exhibit shorter gate
propagation delay which causes the simulation of the ECL circuit to

take more iterations and eventually result in very small time steps.
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il CHAPTER 6

,.
T
5,

THE SLATE-R PROGRAM

With the advantages mentioned in the previous chapters, the
e SLATE Program has been chosen to be the pedestal to implement the

- time—point relaxation techniques. The SLATE Program exploits the

,WA

node tearing method which basically is just a generalized Nortoa

T
N
sd

equivalent circuit approach. Each subcircuit can be extracted as an

| €

equivalent circuit via the LU factorization. By clustering all the

o equivalent subcircuits to construct a simplified equivalent circuit,

which is the interconmection matrix in Eq. (5.2), ome can solve the

interconnection matrix to obtain the node voltages of all the tearing

— P'T -
)

nodes for each subcircuit. The next step is to go back to each sub-

circuit with the tearing ncde voltages as the stimuli to get the node

voltage of the internal nodes. From the viewpoint of the matrix

equations, the SLATE program is still inverting the whole matrix; all

- e

P
o

2 e

R
:

the subcircuits can be solved simultaneously. With this solutiom

E! strategy, one need not worry about the order in which the subcircuits
are to be processed, and the fan—in and fan—out nodes do not have to
g: be identified.
fﬁ However, the solution strategy of the relaxation techniques is
f‘ to process each subcircuit individually by treating the fan—in nodes
i; as the sources and the fan—out nodes as inputs to the next stage of
ﬁj subcircuits, Hence, one should identify the fan—in nodes and fan-out
44

-
.
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BB 2

nodes of each subcircuit and also determine the order in which the

subcircuits are to be processed.

~
—

e

In this chapter, we will describe the implementation of the pro-
gram SLATE-R (a Simulator with Latency and Tearing — Relaxed ver—

sion). Different iterative schemes of the relaxation approaches are

also described.

0 Ira

6.1 The Input Processing —— READIN Overlay

.
For the exploitation of the relaxation techmiques, the fan-in gﬁ
nodes and the fan—out nodes of each subcircuit have to be identified. X

However, the circuit iaput format pf the SLATE (SPICE2) program only
gives the externsl nodes of each subcircuit without specifying the
fan—in nodes and fanmout nodes. The first step of the program imple- 5
mentation is to change the SUBCKT card in the input file. The general &E

form of the subcircuit definition in the SLATE program is as follows:

X
General form ﬁ
.SUBCKT SUBNAM N1 <N2 N3 ...NE) ﬂ

bl

Examples:

«SUBCKT NAND2 10 20 30 40

In the subcircuit definition, SUBNAM is the subcircuit name, and
N1, N2, ... ,NE are the external nodes. For example, the NAND2 cir-

cuit has four external nodes, node #10 is the DC power supply, node T
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#20 and node #30 are the input nodes while node #40 is the output
node. In order to identify the fan—in nodes and the fan—out nodes,

the SUBCKT card is modified to the form:
General form
.SUBCKT SUBNAM N1 <N2 N3 ... NE)> NFIN
Examples:

+SUBCKT NAND2 10 20 30 40 3

where NFIN is the nmmber of the fan—in nodes of the subcircuit. The
DC power supplies are treated as the fan—in nodes in order to obtain
the optimal reordering [10] performance. In this case, the NAND2

circuit has three fan—in nodes and one fan—out node, so NFIN = 3,

6.2 Analysis Sequencing —— ERRCHK Overlay

In the ERRCHK overlay, the SLATE program constructs the node
connection 1lists, This primitive and the event-driven algorithm in
Section 5.3 are used to set up the order in which the subcircuits are

to be processed.

6.3 Matrix Setup and Matrix Location —— SETUP Overlay

With the exploitation of the node tearing approach, the SLATE
program reorders all the tearing nodes to the border as shown in Eq.

(5.1). The interconnection matrix shown in Eq. (5.2) is the core in
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the solution strategies of the node tearing techniques. Because the
relaxation tocﬁniquos need not formulate the imtercommection matrix,
each subcircuit can be treated as one 'indepondent'’' circuit with its
fan~ins as the stimuli input voltage sources. Hence, the matrix set
up is straightforward. The repetitiveness property of subcircuits is
still used in the SLATE-R program, i.e., only ome subcircuit descrip—
tion for esch type of repetitive subcircuit need be stored and only
one set of the submatrix sparse matrix pointers for each type of
repetitive subcircuit is mneeded. In this overlay, a set of fan—in
and fan—out lists are established to trace the input stimuli and the

coupling terms among each subcircuit,

6.4 Analvsis Procedure — DCIRAN Overlay in SLATE Program

6.4.1 Algorithms in SLATE Program

The analysis algorithms used in SLATE program are shown below:

initialize;

TIME = 0

call SORUPD to set sources for the emtire circuit;
call ITERS;

if (not converged) stop analysis;

{ print operating-point solution;

}

savout: store outputs

,4
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H newtim: TIME = TIME + DELTA
o if (TIME > TSTOP ) exit;
-
2 { adjust DELTA for breakpoint table values;
F call SORUPD;
\'\

call ITERS;
& )

if (converged) goto tsterr;

{ TIME = TIME - DELTA;

DELTA = DELTA/8;

vy

goto tstdel;
B )

tsterr: call TRUNC;

i if (error acceptable) goto savout;
& { TIME = TIME - DELTA;
J

DELTA = DELNEW (computed in TRUNC);

B )

, tstdel: if (DELTA < DELMIN ) stop analysis;

b

* goto newtim;

£

. The actual Newton—-Raphson iteration is controlled by subroutine
}-

{0 ITER8. A flow chart for that subroutine follows,

6.4.2 Iteration Scheme in SLATE Program

ITERNO = NONCON = 0 ;

A

Y .
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yload:

subckl:

nxtckl:

sdcdem:

subcks:

nxtcks:

TR W TS W T R TR W W Uw —y

DONE = .false.;
while (mot dome)
{ call YLOAD;
if ((NOSOLV is nonmzero) and
(analysis = initial transieant)) exit;
load the circuit (except subcircuits);
locx=locate(19); (load the first subcircuit)
if (locx = 0) goto sdcdem ;
latency check;
(in time level or Newton—Raphson iteration level)
if (nodplc(locx+9) is nonzero) goto nxtckl;
load elements in subcircuit;
locx = nodplc(locx); (search for the next subcircuit)
goto subckl;
locx = locate(19);

if (loex = 0) exit;
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if (nodplc(loocx+9) = 1) (latency in time level) goto nxtcks;

call SDCDCM; (LU decomposition for subcircuit)
locx = nodplc(locx); goto subcks;
}
ITERNO = ITERNO + 1
if (ITERNO > iteration limit) exit;
if (NONCON = 0 ) DONE = .true.;
{ call DCDCMP;

(LU decomposition for the intercomnection matrix)
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{ call DCSOL; (solve the intercommection matrix)
if (all the tearing nodes converged) NONCON = O;
}
locx = locate(19)
solckt: if (locx = 0) goto yload;
check latency flag:;
if ((nodplc(locx+9) is nonzero ) and
(keep latency)) goto sdcsol;
{ call SDCSQL;
(solve the subcircuit with backward substitution)
check convergence;
if (not comverged) NONCON = NONCON + 1
}
sdcsol: locx = nodplc(locx); goto solckt

}

From the algorithms used in the SLATE program, it is found that
with the implementation of the node tearing technique the SLATE pro—
gram can take advantage of the latency exploitation. However, the
node tearing approach used here is one special reordering technique
which puts all the tearing nodes to the border of the system matrix.
By solving the resulting interconnection matrix [8], one gets the
external node voltages for each subcircuit, while the intermal node
voltages are solved by backward substitutions. From the viewpoint of

solving the matrix equations of the system, full matrix inversion is
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still needed in the SLATE program. In the next section, we describe
how the relaxation techniques are implemented in the DCIRAN overlay

and the core overlay of the SLATE program.

6.5 Modifications of the Analysis Procedure
——— DCTRAN Overlay in SLATE-R Program

Because each time only ome subcircuit is analyzed with the use
of the relaxation techniques, we just need to process the individual
matrix equations for the corresponding subcircuit, This is a depar—
ture from the analysis procedure with the SLATE program. The

analysis algorithms unsed in the SLATE-R program are shown below:

IO\
Iu.

.1 Algorithms in SLATE-R Program

initislize;
TIME = 0
call ITERS;
if (not converged) stop analysis;
{ print operating-point solution;
)
savout: store outputs
newtim: TIME = TIME + DELTA
if (TIME > TSTOP ) exit;
{ adjust DELTA for breakpoint table values;

call ITERS;
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if (converged) goto tsterr;
{ TIME = TIME - DELTA;
DELTA = DELTA/S;

goto tstdel;

}
tsterr: call TRUNC;
if (error acceptable) goto savout;
{ TIME = TIME - DELTA;
DELTA = DELNEW (computed in TRUNC);
}
if (DELTA < DELMIN ) stop analysis;

goto newtim;

Two different iteration schemes are implemented. In order to

describe the iteration schemes, let us recall Eq. (3.6).

sk(erO x?l' ss ey x::il xk' x;+10 seayp x:) = 0

+1
At time t ., the k-th componment of 1, !: R

the above scalar equation, In our implementation, one iteratiom

is obtained by solving

scheme is that each time we only iterate one subocircuit once and go
to the mnext subcircuit and continue this process until all the sub-
circuits are converged. The other scheme is to iterate each subcir-

cuit until convergence 1is reached and then go to the next subcir

cuit, After all the subcircuits are processed, them go back to the
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i =
. first subcircuit to check if the iteration has comverged. This pro— -
\}

(

§ cess proceeds until all the subcircuits are checked. The flow chart

oy 7,
e for the implementation of the first iteration scheme follows. "5

R . |

B Wk
' -
-
LR

6.5.2 Iteration Scheme I in SLATE-R Program i
: o
3 ITERNO = O ; 'f
% DONE = ,false.; -
"' while (not done) :.:
‘ icheck = 0 (convergence flag);

‘i iterat: locx = locate(19)

R subckl: if (locx = 0) goto ncheck; g

{ call SORUPD;

~ .-’.q‘
3

4

(to set sources for this subcircuit) O

e
1y

Sl

.

)

-
L

{ call YLOAD;

f‘:;'

g' (to load elements for this subcircuit) té
g if ((NOSOLV is nomzero) and
K. ’
k.. (analysis = initial transient)) exit; )
b latency check; ~;
] \
‘,_-‘ 4

‘ (in time level or Newton—Raphson iteratiom level)

N}

5 if (nodplc(locx+9) is monmzero) exit; §2
j ]
?)

‘3 { load elements in subcircuit;

.’ call SDCDCM; €
i =

LY

O (LU decomposition for this subcircuit)

N 1
‘$

4,

4%
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}
if (nodplc(locx+9) is nonzero) goto nxtckl;
{ call SDCSQL;
(solve the subcircuit with backward substitution)
NONCON = 0;
check convergence; (for this subcircuit only)
if (all the nodes of this subcircuit comverged) NONCON = 0;
{ NONCON = NONOON + 1
}
if (NONCON = 0) goto nxtckl;
{ icheck = icheck + 1
}
}
locx = nodplc(locx);
(search for the next subcircuit)
goto subckl;
check convergence; (for the entire circuit)
if (icheck = 0) DONE = .true.;
{ ITERNO = ITERNO + 1
if (ITERNO > iteration limit) exit;
icheck = 0;

goto iterst
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The following is the flow chart for the implementation of the second :;
iteration scheme: ..
o
6.5.3 Iteration Scheme II in SLATE-R Program
w
o - 0 5
DONE = ,false.; -
while (not dome) &
icheck = 0 (global convergence flag); R
ichckt = 0 (local convergence flag); =

iterat: locx = locate(19)
subckl: if (locx = 0) goto ncheck; ..
ichckt = 0 &

{ call SORUPD;

(to set sources for this subcircuit)

1
4

} n
yload: { call YLOAD; (to load elements for this subcircuit) -
if (ichckt is nonzero) goto yload2; 23

if ((NOSOLV is nonzero) and "
(analysis = initial transient)) exit; s

latency check; Ef
(in time level or Newton—Raphson iteration level) -

if (nodpic(locx+9) is nonzero) exit; =
yload2: load elements in subcircuit; w2
-

{ call SDCDCM (LU decomposition for this subcircuit);

}

l"“" e
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}
if (nodplc(locx+9) is nomzero) goto nxtckl;
{ call SDCSAOL;
(solve the subcircuit with backward substitution)
NONCON = 0;
check convergence; (for this subcircuit omly)
if (all the nodes of this subcircuit converged) NONCON = 0;
{ NONCON = NONCON + 1
if (NONCON = 0) goto nxtckl;
{ ichckt = ichckt + 1
icheck = icheck + 1

goto yload;

}
nxtckl: loex = nodplc(locx); (search for the next subcircumit)
goto subckl;
ncheck: check convergence; (for the entire circait)
if (icheck = 0) DONE = ,true.;
{ ITERNO = ITERNO + 1
if (ITERNO > iteration limit) exit;

goto iterat

The experimental results for different iteration schemes are

given in the next section.
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6.6 Experimental Results

Table 6.1 shows the results for the lil-stage chain of inverter

circuits in Fig. 5.2.

Simulation data for the ]i-stage chain of inverter circuits

DC Analysis

CPU (sec)
Scheme 1 Scheme II SLATE
5.63 3.20 3.30

Transient Analysis

CPU (sec)
Scheme 1 Scheme II SLATE
39.72 52.92 16.82

B4

Al

el

A
‘ l' PN

SR

E.2
AR

]
wia s

- -~
LA

% ]

R
]

v .
Garale




b 127

.
. Table 6.2 shows the results for the binary-to-octal decoder cir
cuit in Fig. §5.3.

Simulation data for the binarv—to—octal decoder circuit

DC Analysis

)

v
vl

CPU (sec)

Scheme I Scheme 11 SLATE

oo

11.87 7.85 6.27

' Transient Analysis

CPU (sec)

W Scheme I Scheme II SLATE

5 49,88 61.65 14.10
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p Table 6.3 shows the results for the one-bit full adder circuit in m
\ Fig. 5.4.
4 r‘.
5 Table 6.3 )
4 2
; imunlation data for the one—bit full adder circuit -
%
‘% ‘
DC Analysis
) K|
)
N CPU (sec)
A )
h Scheme I Scheme II SLATE &
& 6.18 5.25 4.67 :
W &2
K 0
2 )
v
" Transient Analysis oo
wa
19 -
N
Yy -
e CPU (sec) ,1&
R Scheme I Scheme II SLATE A
H
31.95 48.56 17 .47
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Table 6.4 shows the results for the bipolar transistor cascade of
inverters in Fig. §5.7.

N

Iable 6.4

Simulgtion data for the bipolar transistor inverters

a‘ v

DC Analysis
E CPU (sec)
N Scheme I Scheme II SLATE
E 2.62 3.52 2.12

)

Transient Analvsis

-

CPU (sec)
[3 Scheme I Scheme II SLATE
! 14 .45 33.07 8.42

Pt

6.7 Concluding Remarks

6.7.1 Remark I

From Table 6.1, Table 6.2 and Table 6.3, it is found that for

the MOS digital circuits, Scheme II works faster than Scheme I does

f‘f' -~
..

in the DC analysis, while in the transient analysis, Scheme II is

slower than Scheme I. For example, for the 1l-stage inverter chains,

L1}

in the DC analysis Scheme II takes 3.20 seconds and Scheme I takes

7.23 seconds, whereas in the transient analysis Scheme II takes 52.92

'_-‘friw

.....
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\ seconds and Scheme I takes 39.72 seconds. On the other hand, from

Table 6.4, for the bipolar digital circuit, in the DC analysis,

ﬁ& Scheme II takes 3.52 seconds and Scheme I takes 2.62 seconds, while
&

in the transient analysis, Scheme II takes 33.07 seconds and Scheme I

i
“¥
-
=3

o,
45

takes 14.45 seconds. In other words, Scheme II is always slower than

L
h!

PR

- ’.
4
vy

Scheme I in the simulation of the bipolar digital circuits.

Because there are no coupling capacitors for the MOS digital

&8 a
W o
,S circuits in the DC analysis, in Scheme II one subcircuit is processed

..‘-’ \'

\1 to convergence and then fed to the next subcircuit which obtains the Ea

exact stimuli to process the analysis, hence, there is no waste in

the iterative process. For Scheme I the waveforms fed from the fan

B e
) #3
f e

by

;ia in subcircuit into the next stage are not accurate until the fan-in a3l
2 |

5}' subcircuit achieves convergence; before that, all the iterative

\*\ " processes do not make any sense. §&

BN -

i |

*; However, in the transiemt analysis, from Table 5.5 it is found ér

§‘* that the typical number of iterations needed to achieve convergence

o

yﬁ for MOS digital circuits is three or four at each time point. Let us %ap
&

LY

Wy define one unit as one iteration for one subcircuit. If we take a

SO
15 |

four cascade chain of uniform subcircuits as an example, then Scheme

ol I takes four iteration sweeps to reach convergence with each sweep

2
E.' 4y

analyzing four subcircuits; thea the total units needed for Scheme 1

ol erelaf - 2
DCO] !
Cxlass

1 are 16, If Scheme II is used, it takes four iteratioms for each sub-
Fa ~
. circuit to reach local convergence, that means in the first run the

)
.
" 2
ata

total units are 16 and it takes at least two rums to ensure global

convergence, that is, 32 units.
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The strong coupling terms in the bipolar techmology make the
relaxation technique take more iterations to achieve comvergence as
shown in Table 5.6. The typical number of iterations mneeded to
achieve convergence for bipolar transistor circuits is six to eight
at each time poiut. Similarly, let us take the four cascade chain of
uniform subcircuits as an example. For Scheme I it takes six sweeps
to reach convergence, that is, 24 units. While Scheme II takes six
iterations to achieve local comvergence, each run needs 24 itera-
tions. Scheme II needs at least two runs to emnsure global conver—

gence, that is, 48 units,

Our conclusion is that, if there is no coupling, then Scheme I1I
which is used in MOTIS-C and PREMOS works very well just like MOTIS-C
and PREMOS., VWhen there is coupling, then Scheme I works faster than

Scheme II does.

6.7.2 Remark I

In order to see the performance of the SLATE-R program .in the
simulation of strongly comnected circuits, Table 6.5 and Table 6.6
show the results for the 3-stage ring oscillator in Fig. 4.1 and the

SR Flip Flop in Fig, 6.1. Only Scheme I is used.

L W P Y LN AR I U TR T ST T S S I T T O e T T o T S T e SR S
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Fig. 6.1 SR Flip Flop.
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Table 6.5 shows the results for the 3-stage ring oscillator in
Fig. 4.1,

Table 6.5

Simulation data for the 3-stage ring oscillator

DC Anslysis

CPU (sec)

Scheme 1 SLATE

2.13 0.92

Transient Analysis

CPU (sec)

Scheme I SLATE

18.82 9.48
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Table 6.6 shows the results for the SR Flip Flop in Fig. 6.1,

;0

]

" Table 6.6

a Simunlstion date for the SR Flip Fiop.
)

'.; DC Anslysis

'y

i CPU (sec)

s

(& Scheme I SLATE
[}

“ 3.13 2.08

Transient Anmalysis

CPU (sec)
1‘3 Scheme I SLATE
Y 78.03 22,65
?'
3 6.1.3 Remask III
)
It is found in Section 6.6 that the simulation speed of the
E SLATE~R program 1is two to three times slower than that of the SLATE
. program, In order to find which factors affect the simulation speed,
. the schemes of the latency exploitation in both SLATE-R and SLATE are
3 removed to simulate some circuits again.
N
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Table 6.7 shows the results for the SR Flip Flop im Fig. 6.1
without the latency exploitation.
Table 6.7
Simulatiop data for the SR Flip Flop circuit
(without the latemcy exploitation)
DC Anslysis
CPU (sec) # of iterations
SLATE-R 3.50 25
SLATE 2,58 28
Transient Analysis
CPU (sec) # of iterations
SLATE-R 82 .43 469
SLATE 26.58 171
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' Table 6.8 shows the results for the ome-bit full adder circuit in -~y

bl Fig. 5.4 without the latency exploitation,

’)' )

e ;

Iable 6.8 -

" Simulation data for the ome-bit full adder gircuit

R (without the latency exploitation)

t

DC Analysis

W

! CPU (sec) # of iterations -

4 SLATE-R 7.25 15 .

. "'.f'

g SLATE 5.03 15 d

&

& Transient Analysis ’

3 a

B CPU (sec) # of iterations =

4,8

)

;,i SLATE-R 41 45 84 .

£§ SLATE 17.97 46 )

o:!

)Qﬁ“ g

2

d 23

e It is found that, for DC analysis, SLATE-R and SLATE take the :&

¥

same number of iterations. In Table 6.7, the CPU time for SLATE-R is

) »

o 7.25 seconds and is 144.14% of the 5.03 seconds CPU time for SLATE. o

“- Thus, we can estimate the overhead for the relaxation method to .':4:

Y <

- predict the coupling is 44.14%. Similarly, in Table 6.8, the over—

Yy

, head to predict the coupling is 35.65%. ;:

OA‘

3:: In transient analysis, Table 6.7 shows the SLATE-R takes 84

iterations in 41.45 seconds of CPU time, while SLATE takes only 46 ~

‘.' e

' iterations in 17.97 seconds. The CPU time spent in SLATE-R is 230.66% f\'-
f o2 ]

‘
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of that spent in SLATE; the iteration number needed in SLATE-R is

182 .61% of that needed in SLATE. The overhead to predict the cou-

’-{4 f_ g
. !,

pling is 48.05%. In Table 6.8, the CPU time spent in SLATE-R is ::.

310.12% of that spent in SLATE, and the iteration nmber needed in

‘r'-’
ke

—
*

SLATE-R is 274.26% of that needed in SLATE. The overhead to predict

et ‘-. "

the coupling is 35.86%.

From Table 6.7 and Table 6.8, we can determine the dominant fac-

,.
- -
Py

;
tor which makes the difference in simulation speed. As we can see, :

@ more iterations are required for the relaxation method, and the over— &
[ head for the predictor is also a considerable factor. .
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CONCLUSIONS

We used a simple linear circuit model to represent one gate
driving another gate, and we investigated the numerical stability and
convergence properties of the time-point (Gauss-Seidel) and waveform
relaxation methods as a function of the amount of parasitic coupling
capacitance between the gates and the gain of the driven gate in the

active region,

In Chapter 3 our investigation shows that the modified Gauss-
Seidel time-point relaxation method does not behave well for linmear
stiff systems if the stiffness is caused by the coupling. The method
becomes nume:ically unstable when the size of the time step exceeds
the smallest time constant in the system by a factor of three or

more.

In Chapter 4 we apply the modified waveform relaxation method
for the analysis of linear stiff systems. It is fovnd that the itera-
tions oscillate about the solution and an excessive number of itera-
tions are required for convergence unless the time windows are
approximately the size of the smallest time constant of the system.
These results clearly indicate that if the system stiffness (strong
Miller effect) is caused by the coupling, then the integration step

size cannot exceed approximately the smallest time constant in the

circuit in order to have good comvergence properties.
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However, practical implementation shows that both the waveform
relaxation method and the modified Gauss—Seidel method are not
affected very much by the pole—splitting phenomenon in the simulation
of MDS digital «circuits., This seems to be due to the low gain and
weak coupling in these circuits, Also, digital MOS circuits are
switched on and off fairly rapidly so that they are in the limear

active region only a small percentage of the time interval.

In SLATE the time steps for transient analysis are controlled by
the 1local truncationm error omly. However, because of the poorer sta-
bility convergence properties of the relaxation methods for some
problems, the time step is controlled first by the local truncation
errs:, but if the iteration limit is exceeded, the time step is
reduced until good convergence is achieved. Thus, the SLATE-R pro-
gram may not only require more iterations per time point, but also
more time points may be required to obtain the solutiom in a given

time interval.

It is shown in Table 5.4a and Table 5.4b, Table 5.5a and Table
5.5b that the time steps used im SLATE-R to analyze the MOS digi-
tal circuit examples in this thesis are identical with those in the
original SLATE program. This means the time step is still controlled
by the local truncation error in SLATE-R for these examples. However,
for bipolar teckhnology, our results show that it takes a tremendous
number of iterations to achieve convergence. In some cases, the
number of iterations exceed the iteration limit which forces the time

step to be reduced and eventually causes the error message of ''inter—
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nal time step too small’’ to stop the execution. This means that when
the coupling between subcircunits is too strong, the time steps are
controlled by the iteration count instead of the local truncation
error. Also, occasionally the wide oscillation between successive
iterations causes the arithmetic operations to overflow before the
iteration 1limit is reached, because of the strong coupling (terminal
resistances) in the bipolar circuits. In Chapter §, we used different
terminal resistances for the bipolar TIL circuits and verified that

the strong coupling causes the convergence problem.

Event driven techniques and latency exploitation are implemented
in SLATE-R. Chapter 5§ illustrates the effects of latency exploita-
tion on savings of CPU time, The program structure is shown in
Chapter 6. Two iteration schemes are discussed. It is found that the
performance of different iteration schemes are coupling-oriented. For
the cases of no coupling and strong coupling, Scheme II works better
than Scheme I, while for weak coupling, such as the floating capaci-
tor in MOS circuits, Scheme I is preferred. For very strong coupling,

both Scheme I and Scheme II have poor numerical properties.

With the relaxation technique, there is no need to formulate the
interconnection matrix like in the SLATE program. In the SLATE-R pro-
gram, each subcircuit can be processed individuvally, which is very
suitable for a multiprocessor computer system., Currently, we use the
same time steps for all the subcircuits. Some advantage can be

obtained if each subcircuit wuses its own time step. However, the

overhead for data management in a single processor system might

g2
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.. offset the algorithmatic advantage. The latency exploitation is used Ly
o as a compensation for choosing the same time step for all the subcir— :
cuits, The major advantage of each subcircuit using its own time N

E! steps is to save CPU time with the penalty of data management; in [‘
) this case, the latency exploitation scheme skips those lateat subcir- E
i 2
¢

cuits to save CPU time.

v
'l

In this research, event—driven algorithms are implemented which

sequence the subcircuits to be simulated on the basis of fan—in fan-

-
[
s
O,

-
(PR

out topology. Because the linked list data structure is being used A\

[ in SLATE, the coupling terms are énsily traced from the matrix ;‘
v pointer, With the exploitation of the modified Gauss—Seidel wmethod, 5
ii the coupling terms on each subcircuit are decoupled by using a pre— ;1
Fﬁ dictor, such that the subcircuits can be solved one at a time. %
N ,
"~ It is found that SLATE-R is about a factor of two slower than &%
!! SLATE. There are three factors that slow down the simulation speed: ;‘
. the first is the overhead of using predictor to decouple the coupling E;
:j' terms; the second 1is the larger number of iterations needed to get ;ﬁ
E% the convergence; and the third is that the tearing mnodes and the .;
- power supply mnodes are split for each subcircuit which induces a i;_
ii larger size of submatrix. In Section 5.2, the submatrix size for each S;
s subcircuit is 3x3; however;with the split of power supply nodes and E
" the tearing nodes, the submatrix size is increased to 7x7, thus more E.
%Z CPU time is required for each subcircuit factorization. For future %
research, in order to speed up the simulation speed of SLATE-R, one .;
%{ can change the data structure such that all the voltage sources are :i
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set in the first diagonal block exactly as Equation (5.4) shows,
rather than splitting the voltage source nodes, and each subcircuit
is solved with the submatrix which contains only the unknown vari-
ables., The other approach is to use individual time steps for each
stbcizrcuit, Currently SLATE-R and SLATE both use the same time steps
for all the subcircuits and they are all solved with the smallest
time step. In SLATE, all the subcircuits are processed through LU
factorization as well as the interconnection matrix. Thus, in using a
multiprocessor system to solve the equations, the LU factorization of
the interconnection matrix could create a bottleneck. However, the
solution strategy of the relaxation techmnique is io solve one subcir-
cuit at a time with the coupling terms relaxed; therefore, it seems
to have more potential for implementation in a multiprocessor com—

puter system,

With the potential of taking full advantage of both the tearing
technique and the relaxation technique, the implementation of the
relaxation approach to multiprocessor systems will be a promising
topic for future investigation, In order to implement the relaxation
technique in the multiprocessor computer system, an automatic parti-
tion algorithm that separates the system into certain subsystems is
very important., The basic idea will be to choose terminals with a
minimum fan—out as the partitions., More specifically, choose those
possible nodes, such as the gates in MOS circuits as the set of candi-
dates for partitioning, sand try to partition this set into certain

subsets with about the same size so as not to cause any bottleneck in

the parallel process,
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